Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 150
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Antimicrob Agents Chemother ; 68(2): e0100123, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38231535

RESUMO

Endogenous transporters protect Staphylococcus aureus against antibiotics and also contribute to bacterial defense from environmental toxins. We evaluated the effect of overexpression of four efflux pumps, NorA, NorB, NorC, and Tet38, on S. aureus survival following exposure to pyocyanin (PYO) of Pseudomonas aeruginosa, using a well diffusion assay. We measured the PYO-created inhibition zone and found that only an overexpression of NorA reduced S. aureus susceptibility to pyocyanin killing. The MICPYO of the NorA overexpressor increased threefold compared to that of wild-type RN6390 and was reduced 2.5-fold with reserpine, suggesting that increased NorA efflux caused PYO resistance. The PYO-created inhibition zone of a ΔnorA mutant was consistently larger than that of a plasmid-borne NorA overexpressor. PYO also produced a modest increase in norA expression (1.8-fold at 0.25 µg/mL PYO) that gradually decreased with increasing PYO concentrations. Well diffusion assays carried out using P. aeruginosa showed that ΔnorA mutant was less susceptible to killing by PYO-deficient mutants PA14phzM and PA14phzS than to killing by PA14. NorA overexpression led to reduced killing by all tested P. aeruginosa. We evaluated the NorA-PYO interaction using a collection of 22 clinical isolates from adult and pediatric cystic fibrosis (CF) patients, which included both S. aureus (CF-SA) and P. aeruginosa (CF-PA). We found that when isolated alone, CF-PA and CF-SA expressed varying levels of PYO and norA transcripts, but all four CF-PA/CF-SA pairs isolated concurrently from CF patients produced a low level of PYO and low norA transcript levels, respectively, suggesting a partial adaptation of the two bacteria in circumstances of persistent co-colonization.


Assuntos
Infecções por Pseudomonas , Infecções Estafilocócicas , Humanos , Criança , Staphylococcus aureus , Pseudomonas aeruginosa/metabolismo , Piocianina/farmacologia , Proteínas de Bactérias/metabolismo , Infecções Estafilocócicas/microbiologia , Antibacterianos/farmacologia , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Testes de Sensibilidade Microbiana
2.
PLoS Biol ; 19(3): e3001093, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33690640

RESUMO

Bacterial opportunistic human pathogens frequently exhibit intrinsic antibiotic tolerance and resistance, resulting in infections that can be nearly impossible to eradicate. We asked whether this recalcitrance could be driven by these organisms' evolutionary history as environmental microbes that engage in chemical warfare. Using Pseudomonas aeruginosa as a model, we demonstrate that the self-produced antibiotic pyocyanin (PYO) activates defenses that confer collateral tolerance specifically to structurally similar synthetic clinical antibiotics. Non-PYO-producing opportunistic pathogens, such as members of the Burkholderia cepacia complex, likewise display elevated antibiotic tolerance when cocultured with PYO-producing strains. Furthermore, by widening the population bottleneck that occurs during antibiotic selection and promoting the establishment of a more diverse range of mutant lineages, PYO increases apparent rates of mutation to antibiotic resistance to a degree that can rival clinically relevant hypermutator strains. Together, these results reveal an overlooked mechanism by which opportunistic pathogens that produce natural toxins can dramatically modulate the efficacy of clinical antibiotics and the evolution of antibiotic resistance, both for themselves and other members of clinically relevant polymicrobial communities.


Assuntos
Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Farmacorresistência Bacteriana/genética , Bactérias/genética , Burkholderia cepacia/efeitos dos fármacos , Burkholderia cepacia/metabolismo , Farmacorresistência Bacteriana/efeitos dos fármacos , Tolerância a Medicamentos , Humanos , Testes de Sensibilidade Microbiana , Pseudomonas aeruginosa/efeitos dos fármacos , Piocianina/metabolismo , Piocianina/farmacologia
3.
Biotechnol Bioeng ; 120(3): 702-714, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36408870

RESUMO

Biofilms are communities of bacterial cells encased in a self-produced polymeric matrix that exhibit high tolerance toward environmental stress. Despite the plethora of research on biofilms, most P. aeruginosa biofilm models are cultured on a solid-liquid interface, and the longitudinal growth characteristics of P. aeruginosa biofilm are unclear. This study demonstrates the real-time and noninvasive monitoring of biofilm growth using a novel dual-chamber microfluidic device integrated with electrochemical detection capabilities to monitor pyocyanin (PYO). The growth of P. aeruginosa biofilms on the air-liquid interface (ALI) was monitored over 48 h, and its antibiotic susceptibility to 6 h exposure of 50, 400, and 1600 µg/ml of ciprofloxacin solutions was analyzed. The biofilm was treated directly on its surface and indirectly from the substratum by delivering the CIP solution to the top or bottom chamber of the microfluidic device. Results showed that P. aeruginosa biofilm developed on ALI produces PYO continuously, with the PYO production rate varying longitudinally and peak production observed between 24 and 30 h. In addition, this current study shows that the amount of PYO produced by the ALI biofilm is proportional to its viable cell numbers, which has not been previously demonstrated. Biofilm treated with ciprofloxacin solution above 400 µg/ml showed significant PYO reduction, with biofilms being killed more effectively when treatment was applied to their surfaces. The electrochemical measurement results have been verified with colony-forming unit count results, and the strong correlation between the PYO electrical signal and the viable cell number highlights the usefulness of this approach for fast and low-cost ALI biofilm study and antimicrobial tests.


Assuntos
Ciprofloxacina , Pseudomonas aeruginosa , Ciprofloxacina/farmacologia , Ciprofloxacina/metabolismo , Piocianina/metabolismo , Piocianina/farmacologia , Biofilmes , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Testes de Sensibilidade Microbiana
4.
Molecules ; 28(15)2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37570836

RESUMO

Inhibiting quorum sensing (QS), a central communication system, is a promising strategy to combat bacterial pathogens without antibiotics. Here, we designed novel hybrid compounds targeting the PQS (Pseudomonas quinolone signal)-dependent quorum sensing (QS) of Pseudomonas aeruginosa that is one of the multidrug-resistant and highly virulent pathogens with urgent need of new antibacterial strategies. We synthesized 12 compounds using standard procedures to combine halogen-substituted anthranilic acids with 4-(2-aminoethyl/4-aminobuthyl)amino-7-chloroquinoline, linked via 1,3,4-oxadiazole. Their antibiofilm activities were first pre-screened using Gram-negative Chromobacterium violaceum-based reporter, which identified compounds 15-19 and 23 with the highest anti-QS and minimal bactericidal effects in a single experiment. These five compounds were then evaluated against P. aeruginosa PAO1 to assess their ability to prevent biofilm formation, eradicate pre-formed biofilms, and inhibit virulence using pyocyanin as a representative marker. Compound 15 displayed the most potent antibiofilm effect, reducing biofilm formation by nearly 50% and pre-formed biofilm masses by 25%. On the other hand, compound 23 exhibited the most significant antivirulence effect, reducing pyocyanin synthesis by over 70%. Thus, our study highlights the potential of 1,3,4-oxadiazoles 15 and 23 as promising scaffolds to combat P. aeruginosa. Additionally, interactive QS systems should be considered to achieve maximal anti-QS activity against this clinically relevant species.


Assuntos
Quinolinas , Percepção de Quorum , Piocianina/farmacologia , Biofilmes , Virulência , Antibacterianos/farmacologia , Fatores de Virulência , Quinolinas/farmacologia , Pseudomonas aeruginosa , Chromobacterium
5.
Int Wound J ; 20(10): 4112-4121, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37455022

RESUMO

The present study investigated the antimicrobial and anti-biofilm effects of indigenous Lactobacillus probiotic strains on Pseudomonas aeruginosa isolated from burn wound infection in laboratory conditions. The effect of 7 probiotic strains isolated from infant faeces on the pathogenicity factors of P. aeruginosa, including protease, elastase, antibiofilm and antipyocyanin was measured. Also, diffusion methods in the well and micro broth dilution were used to evaluate the antimicrobial activity of probiotics. All tests were performed in triplicate. A negative control and a positive control were used for each test. SPSS version 22 software was used for statistical analysis, and a p < 0.05 was considered statistically significant. A total of 30 clinical isolates of P. aeruginosa were isolated. The elastolytic activity of P. aeruginosa isolates decreased after adding Cell free supernatant (CFS) of each Lactobacillus. L1, L4, L5, and L6 strains had a 100% inhibitory effect on pathogen isolates. L3 and L7 strains had the lowest inhibitory effect. The inhibitory effect of CFS extracted from lactobacilli on protease production by P. aeruginosa. L1, L4, L5, and L6 strains had an inhibitory effect on all tested isolates. L2, L3, and L7 strains had a less inhibitory effect. L4 strain had the highest inhibitory effect on pyocyanin production by P. aeruginosa (50%), followed by L5 (43.3%), L1 (40%), and L6 (23.3%) strains. L3 and L7 strains had no inhibitory effect on the pyocyanin production of P. aeruginosa isolates. It was found that the CFS of 4 isolates (L1, L4, L5, and L6) was the most active extract and had a 100% inhibitory effect against biofilm formation of all P. aeruginosa strains. The L3 strain had the least inhibitory effect against the biofilm formation of pathogens. Overall, this study showed that probiotics could be promising alternatives to combat the pathogenicity of P. aeruginosa in burn wounds.


Assuntos
Anti-Infecciosos , Queimaduras , Infecções por Pseudomonas , Humanos , Lactobacillus , Pseudomonas aeruginosa , Piocianina/farmacologia , Anti-Infecciosos/farmacologia , Biofilmes , Peptídeo Hidrolases , Queimaduras/terapia , Infecções por Pseudomonas/tratamento farmacológico , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico
6.
Int Microbiol ; 25(3): 447-456, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35066679

RESUMO

Quorum sensing (QS) regulates hundreds of genes in Pseudomonas aeruginosa, and many of which encode extracellular virulence factors. Lactobacillus as a probiotic has been verified to inhibit pathogenesis in P. aeruginosa via quenching QS. The objective of this study was to investigate mechanism of the QS quenching function of Lactobacillus via analyzing the gene expression by transcriptome. We previously isolated a Lactobacillus brevis strain 3M004 from an aquafeed and identified the strain has the function of degrading QS molecular AHL (OC12-HSL). The result showed that 3M004 cells/lysate inhibited biofilm and pyocyanin production of P. aeruginosa PA002. The biofilm inhibition rates were 16.92% and 33.0% after treatment by 1 and 2 mg/mL 3M004 lysate, respectively, and the rates for pyocyanin inhibition were 25.16% and 30.75%, respectively. Transcriptomic analysis showed that down-regulation of genes of LasA and LasB in PA002 was essential in regulating the QS system. The biofilm decrease of PA002 seems not only resulted from gene biosynthesizing of polysaccharides but also from other genes regulating components biosynthesis. Pyocyanin biosynthesis appears to be inhibited by down-regulating the key gene of PhzAB on the nonreversing action from chorismite to pyocyanin.


Assuntos
Levilactobacillus brevis , Pseudomonas aeruginosa , Antibacterianos/farmacologia , Proteínas de Bactérias/metabolismo , Biofilmes , Levilactobacillus brevis/genética , Levilactobacillus brevis/metabolismo , Piocianina/metabolismo , Piocianina/farmacologia , Percepção de Quorum/genética , RNA-Seq , Transcriptoma
7.
Microb Cell Fact ; 21(1): 262, 2022 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-36528623

RESUMO

BACKGROUND: Pyocyanin, a specific extracellular secondary metabolite pigment produced by Pseudomonas aeruginosa, exhibits redox activity and has toxic effects on mammalian cells, making it a new and potent alternative for treating cancer. Breast cancer (BC) treatment is now defied by acquired and de novo resistance to chemotherapy, radiation, or targeted therapies. Therefore, the anticancer activity of purified and characterized pyocyanin was examined against BC in our study. RESULTS: The maximum production of pyocyanin (53 µg/ml) was achieved by incubation of the highest pyocyanin-producing P. aeruginosa strain (P32) in pH-adjusted peptone water supplemented with 3% cetrimide under shaking conditions at 37 °C for 3 days. The high purity of the extracted pyocyanin was proven by HPLC against standard pyocyanin. The stability of pyocyanin was affected by the solvent in which it was stored. Therefore, the purified pyocyanin extract was lyophilized to increase its shelf-life up to one year. Using the MTT assay, we reported, for the first time, the cytotoxic effect of pyocyanin against human breast adenocarcinoma (MCF-7) with IC50 = 15 µg/ml while it recorded a safe concentration against human peripheral blood mononuclear cells (PBMCs). The anticancer potential of pyocyanin against MCF-7 was associated with its apoptotic and necrotic activities which were confirmed qualitatively and quantitively using confocal laser scanning microscopy, inverted microscopy, and flow cytometry. Caspase-3 measurements, using real-time PCR and western blot, revealed that pyocyanin exerted its apoptotic activity against MCF-7 through caspase-3 activation. CONCLUSION: Our work demonstrated that pyocyanin may be an ideal anticancer candidate, specific to cancer cells, for treating MCF-7 by its necrotic and caspase-3-dependent apoptotic activities.


Assuntos
Adenocarcinoma , Neoplasias da Mama , Animais , Humanos , Feminino , Piocianina/metabolismo , Piocianina/farmacologia , Pseudomonas aeruginosa/metabolismo , Caspase 3/metabolismo , Células MCF-7 , Leucócitos Mononucleares/metabolismo , Neoplasias da Mama/tratamento farmacológico , Mamíferos/metabolismo
8.
Mar Drugs ; 20(5)2022 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-35621934

RESUMO

α-Amylase inhibitors (aAIs) have been applied for the efficient management of type 2 diabetes. The aim of this study was to search for potential aAIs produced by microbial fermentation. Among various bacterial strains, Pseudomonas aeruginosa TUN03 was found to be a potential aAI-producing strain, and shrimp heads powder (SHP) was screened as the most suitable C/N source for fermentation. P. aeruginosa TUN03 exhibited the highest aAIs productivity (3100 U/mL) in the medium containing 1.5% SHP with an initial pH of 7-7.5, and fermentation was performed at 27.5 °C for two days. Further, aAI compounds were investigated for scaled-up production in a 14 L-bioreactor system. The results revealed a high yield (4200 U/mL) in a much shorter fermentation time (12 h) compared to fermentation in flasks. Bioactivity-guided purification resulted in the isolation of one major target compound, identified as hemi-pyocyanin (HPC) via gas chromatography-mass spectrometry and nuclear magnetic resonance. Its purity was analyzed by high-performance liquid chromatography. HPC demonstrated potent α-amylase inhibitory activity comparable to that of acarbose, a commercial antidiabetic drug. Notably, HPC was determined as a new aAI. The docking study indicated that HPC inhibits α-amylase by binding to amino acid Arg421 at the biding site on enzyme α-amylase with good binding energy (-9.3 kcal/mol) and creating two linkages of H-acceptors.


Assuntos
Quitina , Piocianina/biossíntese , Quitina/metabolismo , Pseudomonas aeruginosa/metabolismo , Piocianina/farmacologia , alfa-Amilases/antagonistas & inibidores
9.
Molecules ; 27(24)2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36557818

RESUMO

Antimicrobial resistance has posed a serious health concern worldwide, which is mainly due to the excessive use of antibiotics. In this study, gold nanoparticles synthesized from the plant Tinospora cordifolia were used against multidrug-resistant Pseudomonas aeruginosa. The active components involved in the reduction and stabilization of gold nanoparticles were revealed by gas chromatography-mass spectrophotometry(GC-MS) of the stem extract of Tinospora cordifolia. Gold nanoparticles (TG-AuNPs) were effective against P. aeruginosa at different concentrations (50,100, and 150 µg/mL). TG-AuNPs effectively reduced the pyocyanin level by 63.1% in PAO1 and by 68.7% in clinical isolates at 150 µg/mL; similarly, swarming and swimming motilities decreased by 53.1% and 53.8% for PAO1 and 66.6% and 52.8% in clinical isolates, respectively. Biofilm production was also reduced, and at a maximum concentration of 150 µg/mL of TG-AuNPs a 59.09% reduction inPAO1 and 64.7% reduction in clinical isolates were observed. Lower concentrations of TG-AuNPs (100 and 50 µg/mL) also reduced the pyocyanin, biofilm, swarming, and swimming. Phenotypically, the downregulation of exopolysaccharide secretion from P. aeruginosa due to TG-AuNPs was observed on Congo red agar plates.


Assuntos
Nanopartículas Metálicas , Pseudomonas aeruginosa , Ouro/farmacologia , Piocianina/farmacologia , Biofilmes , Antibacterianos/farmacologia
10.
Molecules ; 27(4)2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-35208954

RESUMO

Quorum-sensing (QS) systems of Pseudomonas aeruginosa are involved in the control of biofilm formation and virulence factor production. The current study evaluated the ability of halogenated dihydropyrrol-2-ones (DHP) (Br (4a), Cl (4b), and F (4c)) and a non-halogenated version (4d) to inhibit the QS receptor proteins LasR and PqsR. The DHP molecules exhibited concentration-dependent inhibition of LasR and PqsR receptor proteins. For LasR, all compounds showed similar inhibition levels. However, compound 4a (Br) showed the highest decrease (two-fold) for PqsR, even at the lowest concentration (12.5 µg/mL). Inhibition of QS decreased pyocyanin production amongst P. aeruginosa PAO1, MH602, ATCC 25619, and two clinical isolates (DFU-53 and 364707). In the presence of DHP, P. aeruginosa ATCC 25619 showed the highest decrease in pyocyanin production, whereas clinical isolate DFU-53 showed the lowest decrease. All three halogenated DHPs also reduced biofilm formation by between 31 and 34%. The non-halogenated compound 4d exhibited complete inhibition of LasR and had some inhibition of PqsR, pyocyanin, and biofilm formation, but comparatively less than halogenated DHPs.


Assuntos
Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Pseudomonas aeruginosa/metabolismo , Quinolonas/metabolismo , Percepção de Quorum/efeitos dos fármacos , Piocianina/análogos & derivados , Piocianina/síntese química , Piocianina/química , Piocianina/farmacologia
11.
J Cell Mol Med ; 25(15): 7524-7537, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34278675

RESUMO

Pyocyanin (PYO) is a major virulence factor secreted by Pseudomonas aeruginosa, and autophagy is a crucial homeostatic mechanism for the interaction between the pathogens and the host. It remains unknown whether PYO leads to autophagy in macrophages by regulating histone acetylation. The high mobility group nucleosomal binding domain 2 (HMGN2) has been reported to regulate the PYO-induced autophagy and oxidative stress in the epithelial cells; however, the underlying molecular mechanism has not been fully elucidated. In this study, PYO was found to induce autophagy in macrophages, and the mechanism might be correlated with the up-regulation of HMGN2 acetylation (HMGN2ac) and the down-regulation of H3K27 acetylation (H3K27ac) by modulation of the activities of acetyltransferases and deacetylases. Moreover, we further demonstrated that the up-regulated HMGN2ac enhances its recruitment to the Ulk1 promoter, while the down-regulation of H3K27ac reduces its recruitment to the Ulk1 promoter, thereby promoting or inhibiting the transcription of Ulk1. In conclusion, HMGN2ac and H3K27ac play regulatory roles in the PYO-induced autophagy in macrophages.


Assuntos
Proteína Homóloga à Proteína-1 Relacionada à Autofagia/genética , Autofagia , Proteína HMGN2/metabolismo , Código das Histonas , Macrófagos Peritoneais/metabolismo , Acetilação , Animais , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Células Cultivadas , Humanos , Macrófagos Peritoneais/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Regiões Promotoras Genéticas , Piocianina/farmacologia , Células RAW 264.7 , Células THP-1 , Ativação Transcricional
12.
J Am Chem Soc ; 143(22): 8344-8351, 2021 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-33978401

RESUMO

Bacteriophages have major impact on their microbial hosts and shape entire microbial communities. The majority of these phages are latent and reside as prophages integrated in the genomes of their microbial hosts. A variety of intricate regulatory systems determine the switch from a lysogenic to lytic life style, but so far strategies are lacking to selectively control prophage induction by small molecules. Here we show that Pseudomonas aeruginosa deploys a trigger factor to hijack the lysogenic to lytic switch of a polylysogenic Staphylococcus aureus strain causing the selective production of only one of its prophages. Fractionating extracts of P. aeruginosa identified the phenazine pyocyanin as a highly potent prophage inducer of S. aureus that, in contrast to mitomycin C, displayed prophage selectivity. Mutagenesis and biochemical investigations confirm the existence of a noncanonical mechanism beyond SOS-response that is controlled by the intracellular oxidation level and is prophage-selective. Our results demonstrate that human pathogens can produce metabolites triggering lysogenic to lytic conversion in a prophage-selective manner. We anticipate our discovery to be the starting point of unveiling metabolite-mediated microbe-prophage interactions and laying the foundations for a selective small molecule controlled manipulation of prophage activity. These could be for example applied to control microbial communities by their built-in destruction mechanism in a novel form of phage therapy or for the construction of small molecule-inducible switches in synthetic biology.


Assuntos
Prófagos/metabolismo , Pseudomonas aeruginosa/metabolismo , Staphylococcus aureus/metabolismo , Lisogenia/efeitos dos fármacos , Estrutura Molecular , Prófagos/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos dos fármacos , Piocianina/farmacologia , Staphylococcus aureus/efeitos dos fármacos
13.
Med Mycol ; 59(5): 453-464, 2021 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-32827431

RESUMO

Airways of immunocompromised patients, or individuals with cystic fibrosis (CF), are common ground for Pseudomonas aeruginosa and Aspergillus fumigatus infections. Hence, in such a microenvironment both pathogens compete for resources. While under limiting iron conditions the siderophore pyoverdine is the most effective antifungal P. aeruginosa product, we now provide evidence that under nonlimiting iron conditions P. aeruginosa supernatants lack pyoverdine but still possess considerable antifungal activity. Spectrometric analyses of P. aeruginosa supernatants revealed the presence of phenazines, such as pyocyanin, only under nonlimiting iron conditions. Supernatants of quorum sensing mutants of strain PA14, defective in phenazine production, as well as supernatants of the P. aeruginosa strain PAO1, lacked pyocyanin, and were less inhibitory toward A. fumigatus biofilms under nonlimiting iron conditions. When blood as a natural source of iron was present during P. aeruginosa supernatant production, pyoverdine was absent, and phenazines, including pyocyanin, appeared, resulting in an antifungal effect on A. fumigatus biofilms. Pure pyocyanin reduced A. fumigatus biofilm metabolism. In summary, P. aeruginosa has mechanisms to compete with A. fumigatus under limiting and non-limiting iron conditions, and can switch from iron-denial-based to toxin-based antifungal activity. This has implications for the evolution of the microbiome in clinical settings where the two pathogens co-exist. Important differences in the iron response of P. aeruginosa laboratory strains PA14 and PAO1 were also uncovered.


P. aeruginosa (Pa) and A. fumigatus (Af) form biofilms in lungs of persons with cystic fibrosis and interact via virulence factors. Pa inhibits Af via different factors, depending on the availability of iron from blood. Low iron favors the use of pyoverdine, high iron the use of the toxin pyocyanin.


Assuntos
Aspergillus fumigatus/efeitos dos fármacos , Oligopeptídeos/metabolismo , Oligopeptídeos/farmacologia , Pseudomonas aeruginosa/metabolismo , Piocianina/metabolismo , Piocianina/farmacologia , Antifúngicos/metabolismo , Antifúngicos/farmacologia , Aspergilose/tratamento farmacológico , Aspergilose/microbiologia , Proteínas de Bactérias/farmacologia , Biofilmes/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ferro/metabolismo , Interações Microbianas , Testes de Sensibilidade Microbiana , Mutação , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/genética , Percepção de Quorum
14.
Molecules ; 26(12)2021 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-34205355

RESUMO

Rottlerin is a natural product consisting of chalcone and flavonoid scaffolds, both of which have previously shown quorum sensing (QS) inhibition in various bacteria. Therefore, the unique rottlerin scaffold highlights great potential in inhibiting the QS system of Pseudomonas aeruginosa. Rottlerin analogues were synthesised by modifications at its chalcone- and methylene-bridged acetophenone moieties. The synthesis of analogues was achieved using an established five-step synthetic strategy for chalcone derivatives and utilising the Mannich reaction at C6 of the chromene to construct morpholine analogues. Several pyranochromene chalcone derivatives were also generated using aldol conditions. All the synthetic rottlerin derivatives were screened for QS inhibition and growth inhibition against the related LasR QS system. The pyranochromene chalcone structures displayed high QS inhibitory activity with the most potent compounds, 8b and 8d, achieving QS inhibition of 49.4% and 40.6% and no effect on bacterial growth inhibition at 31 µM, respectively. Both compounds also displayed moderate biofilm inhibitory activity and reduced the production of pyocyanin.


Assuntos
Acetofenonas/farmacologia , Benzopiranos/farmacologia , Produtos Biológicos/farmacologia , Percepção de Quorum/efeitos dos fármacos , Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Flavonoides/farmacologia , Testes de Sensibilidade Microbiana/métodos , Pseudomonas aeruginosa/efeitos dos fármacos , Piocianina/farmacologia
15.
Cell Microbiol ; 21(5): e12994, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30552790

RESUMO

If the mycelium of Aspergillus fumigatus is very short-lived in the laboratory, conidia can survive for years. This survival capacity and extreme resistance to environmental insults is a major biological characteristic of this fungal species. Moreover, conidia, which easily reach the host alveola, are the infective propagules. Earlier studies have shown the role of some molecules of the outer conidial layer in protecting the fungus against the host defense. The outer layer of the conidial cell wall, directly in contact with the host cells, consists of α-(1,3)-glucan, melanin, and proteinaceous rodlets. This study is focused on the global importance of this outer layer. Single and multiple mutants without one to three major components of the outer layer were constructed and studied. The results showed that the absence of the target molecules resulting from multiple gene deletions led to unexpected phenotypes without any logical additivity. Unexpected compensatory cell wall surface modifications were indeed observed, such as the synthesis of the mycelial virulence factor galactosaminogalactan, the increase in chitin and glycoprotein concentration or particular changes in permeability. However, sensitivity of the multiple mutants to killing by phagocytic host cells confirmed the major importance of melanin in protecting conidia.


Assuntos
Aspergillus fumigatus/metabolismo , Parede Celular/metabolismo , Melaninas/metabolismo , Esporos Fúngicos/metabolismo , Aspergilose/imunologia , Aspergillus fumigatus/efeitos dos fármacos , Aspergillus fumigatus/genética , Aspergillus fumigatus/patogenicidade , Azóis/farmacologia , Benzenossulfonatos/farmacologia , Caspofungina/farmacologia , Parede Celular/efeitos dos fármacos , Parede Celular/genética , Quitina/metabolismo , Vermelho Congo/farmacologia , Proteínas Fúngicas/metabolismo , Glucanos/genética , Glucanos/metabolismo , Glicoproteínas/genética , Glicoproteínas/metabolismo , Humanos , Interações Hidrofóbicas e Hidrofílicas , Melaninas/genética , Melaninas/fisiologia , Monócitos/imunologia , Micélio/metabolismo , Fagócitos/metabolismo , Polissacarídeos/metabolismo , Piocianina/farmacologia , Esporos Fúngicos/citologia , Esporos Fúngicos/genética , Fatores de Virulência/metabolismo
16.
Mar Drugs ; 18(2)2020 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-32093216

RESUMO

Marine sponges, a well-documented prolific source of natural products, harbor highly diverse microbial communities. Their extracts were previously shown to contain quorum sensing (QS) signal molecules of the N-acyl homoserine lactone (AHL) type, known to orchestrate bacterial gene regulation. Some bacteria and eukaryotic organisms are known to produce molecules that can interfere with QS signaling, thus affecting microbial genetic regulation and function. In the present study, we established the production of both QS signal molecules as well as QS inhibitory (QSI) molecules in the sponge species Sarcotragus spinosulus. A total of eighteen saturated acyl chain AHLs were identified along with six unsaturated acyl chain AHLs. Bioassay-guided purification led to the isolation of two brominated metabolites with QSI activity. The structures of these compounds were elucidated by comparative spectral analysis of 1HNMR and HR-MS data and were identified as 3-bromo-4-methoxyphenethylamine (1) and 5,6-dibromo-N,N-dimethyltryptamine (2). The QSI activity of compounds 1 and 2 was evaluated using reporter gene assays for long- and short-chain AHL signals (Escherichia coli pSB1075 and E. coli pSB401, respectively). QSI activity was further confirmed by measuring dose-dependent inhibition of proteolytic activity and pyocyanin production in Pseudomonas aeruginosa PAO1. The obtained results show the coexistence of QS and QSI in S. spinosulus, a complex signal network that may mediate the orchestrated function of the microbiome within the sponge holobiont.


Assuntos
Escherichia coli/efeitos dos fármacos , Poríferos/metabolismo , Poríferos/microbiologia , Percepção de Quorum/efeitos dos fármacos , Animais , Escherichia coli/fisiologia , Medições Luminescentes , Peptídeo Hidrolases/química , Peptídeo Hidrolases/farmacologia , Filogenia , Poríferos/genética , Piocianina/química , Piocianina/farmacologia , Fatores de Virulência
17.
Biochem Biophys Res Commun ; 508(3): 850-856, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30528238

RESUMO

Enzymatic antioxidant systems, mainly involving mitochondria, are critical for minimizing the harmful effects of reactive oxygen species, and these systems are enhanced by interactions with nonenzymatic antioxidant nutrients. Because fetal growth requires extensive mitochondrial respiration, pregnant women and fetuses are at high risk of exposure to excessive reactive oxygen species. The enhancement of the antioxidant system, e.g., by nutritional management, is therefore critical for both the mother and fetus. Folic acid supplementation prevents homocysteine accumulation and epigenetic dysregulation associated with one-carbon metabolism. However, few studies have examined the antioxidant effects of folic acid for healthy pregnancy outcomes. The purpose of this study was to elucidate the association between the antioxidant effect of folic acid and mitochondria in undifferentiated cells during fetal growth. Neural crest-derived dental pulp stem cells of human exfoliated deciduous teeth were used as a model of undifferentiated cells in the fetus. Pyocyanin induced excessive reactive oxygen species, resulting in a decrease in cell growth and migration accompanied by mitochondrial fragmentation and inactivation in dental pulp stem cells. This damage was significantly improved by folic acid, along with decreased mitochondrial reactive oxygen species, PGC-1α upregulation, DRP1 downregulation, mitochondrial elongation, and increased ATP production. Folic acid may protect undifferentiated cells from oxidative damage by targeting mitochondrial activation. These results provide evidence for a new benefit of folic acid in pregnant women and fetuses.


Assuntos
Antioxidantes/farmacologia , Polpa Dentária/citologia , Ácido Fólico/farmacologia , Mitocôndrias/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Células-Tronco/efeitos dos fármacos , Dente Decíduo/citologia , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Criança , Humanos , Piocianina/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Células-Tronco/citologia , Células-Tronco/metabolismo
18.
Microb Pathog ; 128: 363-373, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30684638

RESUMO

Pseudomonas aeruginosa is an opportunistic human pathogen which exhibits its property of pathogenesis due to several factors, including the formation of biofilm and production of several virulence factors. Development of resistance properties against antibiotics leads to the discovery of certain alternative strategies to combat its pathogenesis. In the present study, a highly stable, biocompatible and water soluble nanocomposites (NCs) are synthesized from chitosan (CS) and the polypyrrole (PPy). The resultant chitosan-polypyrrole nanocomposites (CS-PPy NCs) inhibit the establishment of biofilm and also eradicate the preformed matured biofilm formed by P. aeruginosa. CS-PPy NCs inhibit the hemolytic and protease activities of P. aeruginosa. The NCs significantly reduce the production of many virulence factors such as pyocyanin, pyroverdine and rhamnolipid. CS-PPy NCs also suppress the bacterial motility such as swimming and swarming. The present study showed that highly stable CS-PPy NCs act as a potent antibiofilm and antivirulence drug for the treatment of P. aeruginosa infection.


Assuntos
Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Quitosana/farmacologia , Nanocompostos/química , Polímeros/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Pirróis/farmacologia , Eritrócitos , Glicolipídeos/farmacologia , Hemólise/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Peptídeo Hidrolases/efeitos dos fármacos , Pseudomonas aeruginosa/crescimento & desenvolvimento , Piocianina/farmacologia , Fatores de Virulência
19.
Immunopharmacol Immunotoxicol ; 41(1): 102-108, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30623710

RESUMO

Context: Pyocyanin is a typical Pseudomonas aeruginosa virulence factor, a common Gram-negative rod responsible for a wide range of severe nosocomial infections. There is evidence indicating that pyocyanin has multiple biological activities, but little is known about anti-inflammatory properties. Objective: This study investigated pyocyanin effect on nitric oxide and cytokine production in lipopolysaccharide (LPS)-activated murine peritoneal macrophages. Materials and methods: Macrophages were incubated in the presence and absence of pyocyanin (1, 5, 10, 50, and 100 µM) with and without LPS (1 µg/mL). Nitric oxide production was determined by Griess reagent and tumor necrosis factor (TNF)-α and interleukin (IL)-1ß production was assessed by enzyme-linked immunosorbent assay. In addition, pyocyanin effects on zymosan A-induced peritonitis in mice were evaluated. Results: Pyocyanin (5 and 10 µM) decreased nitric oxide, TNF-α, and IL-1ß production independent of macrophage death. On the other hand, in vivo, pyocyanin (5 mg/kg) was not able to affect leukocyte migration into the site of inflammation. Discussion and conclusion: Thus, our findings suggest that pyocyanin exerts anti-inflammatory effects on murine peritoneal macrophages, downregulating nitric oxide, TNF-α, and IL-1ß levels, which seems to be independent of cell migration. These effects may represent a mechanism of immune evasion; nevertheless more detailed studies should be performed to confirm this hypothesis.


Assuntos
Anti-Inflamatórios/farmacologia , Mediadores da Inflamação/metabolismo , Lipopolissacarídeos/toxicidade , Macrófagos Peritoneais/efeitos dos fármacos , Macrófagos Peritoneais/imunologia , Piocianina/farmacologia , Animais , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Feminino , Interleucina-1beta/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Óxido Nítrico/biossíntese , Peritonite/imunologia , Peritonite/prevenção & controle , Fator de Necrose Tumoral alfa/metabolismo , Zimosan
20.
Artigo em Inglês | MEDLINE | ID: mdl-29784845

RESUMO

Multidrug-resistant bacterial infections are being increasingly treated in clinics with polymyxins, a class of antibiotics associated with adverse effects on the kidney, nervous system, or airways of a significant proportion of human and animal patients. Although many of the resistant pathogens display enhanced virulence, the hazard of cytotoxic interactions between polymyxin antibiotics and bacterial virulence factors (VFs) has not been assessed, to date. We report here the testing of paired combinations of four Pseudomonas aeruginosa VF phenazine toxins, pyocyanin (PYO), 1-hydroxyphenazine (1-HP), phenazine-1-carboxylic acid (PCA), and phenazine-1-carboxamide (PCN), and two commonly prescribed polymyxin drugs, colistin-colistimethate sodium (CMS) and polymyxin B, in three human airway cell lines, BEAS-2B, HBE-1, and CFT-1. Cytotoxicities of individual antibiotics, individual toxins, and their combinations were evaluated by the simultaneous measurement of mitochondrial metabolic, total transcriptional/translational, and Nrf2 stress response regulator activities in treated cells. Two phenazines, PYO and 1-HP, were cytotoxic at clinically relevant concentrations (100 to 150 µM) and prompted a significant increase in oxidative stress-induced transcriptional activity in surviving cells. The polymyxin antibiotics arrested cell proliferation at clinically achievable (<1 mM) concentrations as well, with CMS displaying surprisingly high cytotoxicity (50% effective dose [ED50] = 180 µM) in BEAS-2B cells. The dose-response curves were probed by a median-effect analysis, which established a synergistically enhanced cytotoxicity of the PYO-CMS combination in all three airway cell lines; a particularly strong effect on BEAS-2B cells was observed, with a combination index (CI) of 0.27 at the ED50 PCA, PCN, and 1-HP potentiated CMS cytotoxicity to a smaller extent. The cytotoxicity of CMS could be reduced with 10 mM N-acetyl-cysteine. Iron chelators, while ineffective against the polymyxins, could rescue all three bronchial epithelial cell lines treated with lethal PYO or CMS-PYO doses. These findings suggest that further evaluations of CMS safety are needed, along with a search for means to moderate potentially cytotoxic interactions.


Assuntos
Antibacterianos/farmacologia , Colistina/análogos & derivados , Células Epiteliais/microbiologia , Fenazinas/farmacologia , Linhagem Celular , Colistina/farmacologia , Farmacorresistência Bacteriana Múltipla , Humanos , Polimixinas/farmacologia , Pseudomonas aeruginosa , Piocianina/farmacologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa