Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
PLoS Genet ; 14(10): e1007654, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30307990

RESUMO

Almost 60 years ago, Severo Ochoa was awarded the Nobel Prize in Physiology or Medicine for his discovery of the enzymatic synthesis of RNA by polynucleotide phosphorylase (PNPase). Although this discovery provided an important tool for deciphering the genetic code, subsequent work revealed that the predominant function of PNPase in bacteria and eukaryotes is catalyzing the reverse reaction, i.e., the release of ribonucleotides from RNA. PNPase has a crucial role in RNA metabolism in bacteria and eukaryotes mainly through its roles in processing and degrading RNAs, but additional functions in RNA metabolism have recently been reported for this enzyme. Here, we discuss these established and noncanonical functions for PNPase and the possibility that the major impact of PNPase on cell physiology is through its unorthodox roles.


Assuntos
Polirribonucleotídeo Nucleotidiltransferase/genética , Polirribonucleotídeo Nucleotidiltransferase/fisiologia , Animais , Bactérias/genética , Endorribonucleases/genética , Endorribonucleases/metabolismo , Exorribonucleases/genética , Exorribonucleases/metabolismo , Regulação da Expressão Gênica/genética , Código Genético , Humanos , RNA/metabolismo , Estabilidade de RNA/genética , Estabilidade de RNA/fisiologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Ribossômico/metabolismo , Ribonucleases/genética
2.
Nucleic Acids Res ; 45(10): 5980-5994, 2017 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-28453818

RESUMO

In gram-positive bacteria, RNase J1, RNase J2 and RNase Y are thought to be major contributors to mRNA degradation and maturation. In Staphylococcus aureus, RNase Y activity is restricted to regulating the mRNA decay of only certain transcripts. Here the saePQRS operon was used as a model to analyze RNase Y specificity in living cells. A RNase Y cleavage site is located in an intergenic region between saeP and saeQ. This cleavage resulted in rapid degradation of the upstream fragment and stabilization of the downstream fragment. Thereby, the expression ratio of the different components of the operon was shifted towards saeRS, emphasizing the regulatory role of RNase Y activity. To assess cleavage specificity different regions surrounding the sae CS were cloned upstream of truncated gfp, and processing was analyzed in vivo using probes up- and downstream of CS. RNase Y cleavage was not determined by the cleavage site sequence. Instead a 24-bp double-stranded recognition structure was identified that was required to initiate cleavage 6 nt upstream. The results indicate that RNase Y activity is determined by secondary structure recognition determinants, which guide cleavage from a distance.


Assuntos
Proteínas de Bactérias/genética , DNA Intergênico/genética , Endorribonucleases/fisiologia , Regulação Bacteriana da Expressão Gênica/genética , Complexos Multienzimáticos/fisiologia , Óperon/genética , Polirribonucleotídeo Nucleotidiltransferase/fisiologia , Proteínas Quinases/genética , RNA Helicases/fisiologia , Estabilidade de RNA/genética , RNA Bacteriano/metabolismo , RNA Mensageiro/metabolismo , Staphylococcus aureus/genética , Fatores de Transcrição/genética , Sequência de Bases , Mutagênese Sítio-Dirigida , Conformação de Ácido Nucleico , Plasmídeos , RNA Bacteriano/genética , RNA Mensageiro/genética , Proteínas Recombinantes de Fusão/genética , Sequências Reguladoras de Ácido Nucleico , Staphylococcus aureus/enzimologia
3.
Genes Dev ; 25(4): 385-96, 2011 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-21289064

RESUMO

Small RNA (sRNA)-induced mRNA degradation occurs through binding of an sRNA to a target mRNA with the concomitant action of the RNA degradosome, which induces an endoribonuclease E (RNase E)-dependent cleavage and degradation of the targeted mRNA. Because many sRNAs bind at the ribosome-binding site (RBS), it is possible that the resulting translation block is sufficient to promote the rapid degradation of the targeted mRNA. Contrary to this mechanism, we report here that the pairing of the sRNA RyhB to the target mRNA sodB initiates mRNA degradation even in the absence of translation on the mRNA target. Remarkably, even though it pairs at the RBS, the sRNA RyhB induces mRNA cleavage in vivo at a distal site located >350 nucleotides (nt) downstream from the RBS, ruling out local cleavage near the pairing site. Both the RNA chaperone Hfq and the RNA degradosome are required for efficient cleavage at the distal site. Thus, beyond translation initiation block, sRNA-induced mRNA cleavage requires several unexpected steps, many of which are determined by structural features of the target mRNA.


Assuntos
Biossíntese de Proteínas/efeitos dos fármacos , Processamento Pós-Transcricional do RNA/efeitos dos fármacos , Estabilidade de RNA/efeitos dos fármacos , RNA Interferente Pequeno/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sequência de Bases , Endorribonucleases/genética , Endorribonucleases/metabolismo , Endorribonucleases/fisiologia , Escherichia coli/genética , Escherichia coli/metabolismo , Escherichia coli/fisiologia , Óperon Lac , Modelos Biológicos , Complexos Multienzimáticos/genética , Complexos Multienzimáticos/metabolismo , Complexos Multienzimáticos/fisiologia , Organismos Geneticamente Modificados , Polirribonucleotídeo Nucleotidiltransferase/genética , Polirribonucleotídeo Nucleotidiltransferase/metabolismo , Polirribonucleotídeo Nucleotidiltransferase/fisiologia , Biossíntese de Proteínas/fisiologia , Inibidores da Síntese de Proteínas/farmacologia , RNA Helicases/genética , RNA Helicases/metabolismo , RNA Helicases/fisiologia , Processamento Pós-Transcricional do RNA/genética , Processamento Pós-Transcricional do RNA/fisiologia , Estabilidade de RNA/fisiologia , RNA Mensageiro/metabolismo , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Transdução Genética
4.
Arch Microbiol ; 200(5): 783-791, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29423562

RESUMO

Bacillus subtilis is a wealth source of lipopeptide molecules such as iturins, surfactins and fengycins or plipastatins endowed with a range of biological activities. These molecules, designated secondary metabolites, are synthesized via non-ribosomal peptides synthesis (NRPS) machinery and are most often subjected to a complex regulation with involvement of several regulatory factors. To gain novel insights on mechanism regulating fengycin production, we investigated the effect of the fascinating polynucleotide phosphorylase (PNPase), as well as the effect of lipopeptide surfactin. Compared to the wild type, the production of fengycin in the mutant strains B. subtilis BBG235 and BBG236 altered for PNPase has not only decreased to about 70 and 40%, respectively, but also hampered its antifungal activity towards the plant pathogen Botrytis cinerea. On the other hand, mutant strains BBG231 (srfAA-) and BBG232 (srfAC-) displayed different levels of fengycin production. BBG231 had registered an important decrease in fengycin production, comparable to that observed for BBG235 or BBG236. This study permitted to establish that the products of pnpA gene (PNPase), and srfAA- (surfactin synthetase) are involved in fengycin production.


Assuntos
Bacillus subtilis/metabolismo , Proteínas de Bactérias/fisiologia , Lipopeptídeos/biossíntese , Polirribonucleotídeo Nucleotidiltransferase/fisiologia , Bacillus subtilis/genética , Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Lipopeptídeos/genética , Mutação , Óperon
5.
J Bacteriol ; 199(13)2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28396352

RESUMO

In diverse bacterial lineages, multienzyme assemblies have evolved that are central elements of RNA metabolism and RNA-mediated regulation. The aquatic Gram-negative bacterium Caulobacter crescentus, which has been a model system for studying the bacterial cell cycle, has an RNA degradosome assembly that is formed by the endoribonuclease RNase E and includes the DEAD-box RNA helicase RhlB. Immunoprecipitations of extracts from cells expressing an epitope-tagged RNase E reveal that RhlE, another member of the DEAD-box helicase family, associates with the degradosome at temperatures below those optimum for growth. Phenotype analyses of rhlE, rhlB, and rhlE rhlB mutant strains show that RhlE is important for cell fitness at low temperature and its role may not be substituted by RhlB. Transcriptional and translational fusions of rhlE to the lacZ reporter gene and immunoblot analysis of an epitope-tagged RhlE indicate that its expression is induced upon temperature decrease, mainly through posttranscriptional regulation. RNase E pulldown assays show that other proteins, including the transcription termination factor Rho, a second DEAD-box RNA helicase, and ribosomal protein S1, also associate with the degradosome at low temperature. The results suggest that the RNA degradosome assembly can be remodeled with environmental change to alter its repertoire of helicases and other accessory proteins.IMPORTANCE DEAD-box RNA helicases are often present in the RNA degradosome complex, helping unwind secondary structures to facilitate degradation. Caulobacter crescentus is an interesting organism to investigate degradosome remodeling with change in temperature, because it thrives in freshwater bodies and withstands low temperature. In this study, we show that at low temperature, the cold-induced DEAD-box RNA helicase RhlE is recruited to the RNA degradosome, along with other helicases and the Rho protein. RhlE is essential for bacterial fitness at low temperature, and its function may not be complemented by RhlB, although RhlE is able to complement for rhlB loss. These results suggest that RhlE has a specific role in the degradosome at low temperature, potentially improving adaptation to this condition.


Assuntos
Proteínas de Bactérias/metabolismo , Caulobacter crescentus/metabolismo , RNA Helicases DEAD-box/metabolismo , Endorribonucleases/fisiologia , Regulação Bacteriana da Expressão Gênica/fisiologia , Complexos Multienzimáticos/fisiologia , Polirribonucleotídeo Nucleotidiltransferase/fisiologia , RNA Helicases/fisiologia , RNA Bacteriano/metabolismo , Proteínas de Bactérias/genética , Caulobacter crescentus/genética , Temperatura Baixa , Regulação Enzimológica da Expressão Gênica/fisiologia
6.
Nucleic Acids Res ; 42(9): 5894-906, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24682814

RESUMO

Long 3' untranslated regions (3'UTRs) are common in eukaryotic mRNAs. In contrast, long 3'UTRs are rare in bacteria, and have not been characterized in detail. We describe a 3'UTR of 310 nucleotides in hilD mRNA, a transcript that encodes a transcriptional activator of Salmonella enterica pathogenicity island 1 (SPI-1). Deletion of the hilD 3'UTR increases the hilD mRNA level, suggesting that the hilD 3'UTR may play a role in hilD mRNA turnover. Cloning of the hilD 3'UTR downstream of the green fluorescent protein (gfp) gene decreases green fluorescent protein (GFP) activity in both Escherichia coli and S. enterica, indicating that the hilD 3'UTR can act as an independent module. S. enterica mutants lacking either ribonuclease E or polynucleotide phosphorylase contain similar amounts of hilD and hilD Δ3'UTR mRNAs, suggesting that the hilD 3'UTR is a target for hilD mRNA degradation by the degradosome. The hilD 3'UTR is also necessary for modulation of hilD and SPI-1 expression by the RNA chaperone Hfq. Overexpression of SPI-1 in the absence of the hilD 3'UTR retards Salmonella growth and causes uncontrolled invasion of epithelial cells. Based on these observations, we propose that the S. enterica hilD 3'UTR is a cis-acting element that contributes to cellular homeostasis by promoting hilD mRNA turnover.


Assuntos
Proteínas de Bactérias/genética , RNA Bacteriano/genética , RNA Mensageiro/genética , Salmonella typhimurium/genética , Fatores de Transcrição/genética , Regiões 3' não Traduzidas , Proteínas de Bactérias/metabolismo , Sequência de Bases , Endorribonucleases/fisiologia , Regulação Bacteriana da Expressão Gênica , Sequências Repetidas Invertidas , Dados de Sequência Molecular , Complexos Multienzimáticos/fisiologia , Polirribonucleotídeo Nucleotidiltransferase/fisiologia , RNA Helicases/fisiologia , Estabilidade de RNA , RNA Bacteriano/metabolismo , RNA Mensageiro/metabolismo , Salmonella typhimurium/crescimento & desenvolvimento , Salmonella typhimurium/metabolismo , Fatores de Transcrição/metabolismo
7.
J Biol Chem ; 288(12): 7996-8003, 2013 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-23362267

RESUMO

A large group of bacterial small regulatory RNAs (sRNAs) use the Hfq chaperone to mediate pairing with and regulation of mRNAs. Recent findings help to clarify how Hfq acts and highlight the role of the endonuclease RNase E and its associated proteins (the degradosome) in negative regulation by these sRNAs. sRNAs frequently uncouple transcription and translation by blocking ribosome access to the mRNA, allowing other proteins access to the mRNA. As more examples of sRNA-mediated regulation are studied, more variations on how Hfq, RNase E, and other proteins collaborate to bring about sRNA-based regulation are being found.


Assuntos
Proteínas de Escherichia coli/fisiologia , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Fator Proteico 1 do Hospedeiro/fisiologia , Pequeno RNA não Traduzido/fisiologia , Salmonella enterica/genética , Endorribonucleases/metabolismo , Endorribonucleases/fisiologia , Escherichia coli/enzimologia , Complexos Multienzimáticos/metabolismo , Complexos Multienzimáticos/fisiologia , Polirribonucleotídeo Nucleotidiltransferase/metabolismo , Polirribonucleotídeo Nucleotidiltransferase/fisiologia , RNA Helicases/metabolismo , RNA Helicases/fisiologia , Estabilidade de RNA , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , RNA Bacteriano/fisiologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Salmonella enterica/enzimologia
8.
Trends Biochem Sci ; 31(7): 359-65, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16766188

RESUMO

In Escherichia coli, the multi-enzyme RNA degradosome contributes to the global, posttranscriptional regulation of gene expression. The degradosome components are recognized through natively unstructured "microdomains" comprising as few as 15-40 amino acids. Consequently, the degradosome might experience a comparatively smaller number of evolutionary constraints, because there is little requirement to maintain a folded state for the interaction sites. New regulatory properties of the degradosome could arise with relative rapidity, because partners that modify its function could be recruited by quickly evolving microdomains. The unusual combination of the centrality of RNA degradation in gene expression and the generality of natively unstructured microdomains in recognition can fortuitously confer a capacity for efficacious adaptive change to degradosome-like assemblies in eubacteria.


Assuntos
Endorribonucleases/fisiologia , Escherichia coli/genética , Evolução Molecular , Complexos Multienzimáticos/fisiologia , Polirribonucleotídeo Nucleotidiltransferase/fisiologia , RNA Helicases/fisiologia , Modelos Moleculares , Filogenia
9.
Mol Cell Biol ; 26(22): 8475-87, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16966381

RESUMO

We recently identified polynucleotide phosphorylase (PNPase) as a potential binding partner for the TCL1 oncoprotein. Mammalian PNPase exhibits exoribonuclease and poly(A) polymerase activities, and PNPase overexpression inhibits cell growth, induces apoptosis, and stimulates proinflammatory cytokine production. A physiologic connection for these anticancer effects and overexpression is difficult to reconcile with the presumed mitochondrial matrix localization for endogenous PNPase, prompting this study. Here we show that basal and interferon-beta-induced PNPase was efficiently imported into energized mitochondria with coupled processing of the N-terminal targeting sequence. Once imported, PNPase localized to the intermembrane space (IMS) as a peripheral membrane protein in a multimeric complex. Apoptotic stimuli caused PNPase mobilization following cytochrome c release, which supported an IMS localization and provided a potential route for interactions with cytosolic TCL1. Consistent with its IMS localization, PNPase knockdown with RNA interference did not affect mitochondrial RNA levels. However, PNPase reduction impaired mitochondrial electrochemical membrane potential, decreased respiratory chain activity, and was correlated with altered mitochondrial morphology. This resulted in FoF1-ATP synthase instability, impaired ATP generation, lactate accumulation, and AMP kinase phosphorylation with reduced cell proliferation. Combined, the data demonstrate an unexpected IMS localization and a key role for PNPase in maintaining mitochondrial homeostasis.


Assuntos
Mitocôndrias/enzimologia , Mitocôndrias/fisiologia , Membranas Mitocondriais/enzimologia , Polirribonucleotídeo Nucleotidiltransferase/metabolismo , Trifosfato de Adenosina/metabolismo , Apoptose , Linhagem Celular , Citocromos c/metabolismo , Células HeLa , Homeostase , Humanos , Modelos Biológicos , Polirribonucleotídeo Nucleotidiltransferase/genética , Polirribonucleotídeo Nucleotidiltransferase/fisiologia , RNA/metabolismo , Interferência de RNA , RNA Mitocondrial , Ribonucleases/metabolismo , Ribonucleases/fisiologia
10.
J Mol Biol ; 372(1): 23-36, 2007 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-17658549

RESUMO

The mitochondrial degradosome (mtEXO), the main RNA-degrading complex of yeast mitochondria, is composed of two subunits: an exoribonuclease encoded by the DSS1 gene and an RNA helicase encoded by the SUV3 gene. We expressed both subunits of the yeast mitochondrial degradosome in Escherichia coli, reconstituted the complex in vitro and analyzed the RNase, ATPase and helicase activities of the two subunits separately and in complex. The results reveal a very strong functional interdependence. For every enzymatic activity, we observed significant changes when the relevant protein was present in the complex, compared to the activity measured for the protein alone. The ATPase activity of Suv3p is stimulated by RNA and its background activity in the absence of RNA is reduced greatly when the protein is in the complex with Dss1p. The Suv3 protein alone does not display RNA-unwinding activity and the 3' to 5' directional helicase activity requiring a free 3' single-stranded substrate becomes apparent only when Suv3p is in complex with Dss1p. The Dss1 protein alone does have some basal exoribonuclease activity, which is not ATP-dependent, but in the presence of Suv3p the activity of the entire complex is enhanced greatly and is entirely ATP-dependent, with no residual activity observed in the absence of ATP. Such absolute ATP-dependence is unique among known exoribonuclease complexes. On the basis of these results, we propose a model in which the Suv3p RNA helicase acts as a molecular motor feeding the substrate to the catalytic centre of the RNase subunit.


Assuntos
Endorribonucleases/genética , Endorribonucleases/fisiologia , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/fisiologia , Complexos Multienzimáticos/genética , Complexos Multienzimáticos/fisiologia , Polirribonucleotídeo Nucleotidiltransferase/genética , Polirribonucleotídeo Nucleotidiltransferase/fisiologia , RNA Helicases/genética , RNA Helicases/fisiologia , Saccharomyces cerevisiae/genética , Trifosfato de Adenosina/metabolismo , Domínio Catalítico , RNA Helicases DEAD-box/metabolismo , Endorribonucleases/isolamento & purificação , Endorribonucleases/metabolismo , Escherichia coli , Exorribonucleases/metabolismo , Genes Fúngicos/fisiologia , Proteínas Mitocondriais/isolamento & purificação , Proteínas Mitocondriais/metabolismo , Complexos Multienzimáticos/isolamento & purificação , Complexos Multienzimáticos/metabolismo , Polirribonucleotídeo Nucleotidiltransferase/isolamento & purificação , Polirribonucleotídeo Nucleotidiltransferase/metabolismo , Subunidades Proteicas/metabolismo , RNA Helicases/isolamento & purificação , RNA Helicases/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transformação Bacteriana
11.
Adv Exp Med Biol ; 603: 217-24, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17966418

RESUMO

Low temperatures as well as encounters with host phagocytes are two stresses that have been relatively well studied in many species of bacteria. The exoribonuclease polynucleotide phosphorylase (PNPase) has previously been shown to be required by several species of bacteria, including Yersinia, for low-temperature growth. We have shown that PNPase also enhances the ability of Yersinia to withstand the killing activities of murine macrophages. We have gone on to show that PNPase is required for the optimal functioning of Yersinia's type three secretion system (T3SS), an organelle that injects effector proteins directly into host cells. Surprisingly, the PNPase-mediated effect on T3SS activity is independent of PNPase's ribonuclease activity and instead requires only its S1 RNA-binding domain. In stark contrast, the catalytic activity of PNPase is strictly required for enhanced growth at low temperature. Preliminary experiments suggest that the RNA-binding interface of the S1 domain is critical for its T3SS-enhancing activity. Our findings indicate that PNPase plays versatile roles in promoting Yersinia's survival in response to stressful conditions.


Assuntos
Polirribonucleotídeo Nucleotidiltransferase/fisiologia , Yersinia/fisiologia , Animais , Genes Bacterianos , Humanos , Macrófagos/imunologia , Camundongos , Mutação , Polirribonucleotídeo Nucleotidiltransferase/genética , Virulência , Yersinia/genética , Yersinia/imunologia , Yersinia/patogenicidade
12.
Nucleic Acids Res ; 30(20): 4527-33, 2002 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-12384600

RESUMO

Plastid mRNA stability is tightly regulated by external signals such as light. We have investigated the biochemical mechanism responsible for the dark-induced decrease of relative half-lives for mRNAs encoding photosynthetic proteins. Protein fractions isolated from plastids of light-grown and dark-adapted plants correctly reproduced an RNA degradation pathway in the dark that is downregulated in the light. This dark-dependent pathway is initiated by endonucleolytic cleavages in the petD mRNA precursor substrate proximal to a region that can fold into a stem-loop structure. Polynucleotide phosphorylase (PNPase) polyadenylation activity was strongly increased in the protein fraction isolated from plastids in dark-adapted plants, but interestingly PNPase activity was not required for the initiation of dark-induced mRNA degradation. A protein factor present in the protein fraction from plastids of light-grown plants could inactivate the endonuclease activity and thereby stabilize the RNA substrate in the protein fraction from plastids of dark-adapted plants. The results show that plastid mRNA stability is effectively controlled by the regulation of a specific dark-induced RNA degradation pathway.


Assuntos
Complexo Citocromos b6f , Escuridão , Endorribonucleases/metabolismo , Regulação da Expressão Gênica de Plantas , Estabilidade de RNA , RNA de Cloroplastos/metabolismo , Regiões 3' não Traduzidas , Grupo dos Citocromos b/genética , Grupo dos Citocromos b/metabolismo , Ativação Enzimática , Luz , Proteínas de Plantas/análise , Poliadenilação , Polirribonucleotídeo Nucleotidiltransferase/fisiologia , Precursores de RNA/química , Precursores de RNA/metabolismo , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo
13.
Nucleic Acids Res ; 32(17): 5174-82, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15459286

RESUMO

Plant mitochondria contain three rRNA genes, rrn26, rrn18 and rrn5, the latter two being co-transcribed. We have recently identified a polynucleotide phosphorylase-like protein (AtmtPNPase) in Arabidopsis mitochondria. Plants downregulated for AtmtPNPase expression (PNP-plants) accumulate 18S rRNA species polyadenylated at internal sites, indicating that AtmtPNPase is involved in 18S rRNA degradation. In addition, AtmtPNPase is required to degrade the leader sequence of 18S rRNA, a maturation by-product excised by an endonucleolytic cut 5' to the 18S rRNA. PNP-plants also accumulate 18S rRNA precursors correctly processed at their 5' end but containing the intergenic sequence (ITS) between the 18S and 5S rRNA. Interestingly, these precursors may be polyadenylated. Taken together, these results suggest that AtmtPNPase initiates the degradation of the ITS from 18S precursors following polyadenylation. To test this, we overexpressed in planta a second mitochondrial exoribonuclease, AtmtRNaseII, that degrades efficiently unstructured RNA including poly(A) tails. This resulted also in the detection of 18S rRNA precursors showing that AtmtRNaseII is not able to degrade the ITS but can impede the action of AtmtPNPase in initiating the degradation of the ITS. These results show that AtmtPNPase is essential for several aspects of 18S rRNA metabolism in Arabidopsis mitochondria.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/enzimologia , Exorribonucleases/fisiologia , Mitocôndrias/enzimologia , Polirribonucleotídeo Nucleotidiltransferase/fisiologia , RNA de Plantas/metabolismo , RNA Ribossômico 18S/metabolismo , Regiões 5' não Traduzidas/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Sequência de Bases , DNA Intergênico/metabolismo , Regulação para Baixo , Endorribonucleases/metabolismo , Exorribonucleases/metabolismo , Mitocôndrias/genética , Dados de Sequência Molecular , Poliadenilação , Precursores de RNA/química , Precursores de RNA/metabolismo , RNA de Plantas/química , RNA Ribossômico 18S/química
14.
FEBS J ; 272(2): 454-63, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15654883

RESUMO

The bacterial Lsm protein, host factor I (Hfq), is an RNA chaperone involved in many types of RNA transactions such as replication and stability, control of small RNA activity and polyadenylation. In this latter case, Hfq stimulates poly(A) synthesis and binds poly(A) tails that it protects from exonucleolytic degradation. We show here, that there is a correlation between Hfq binding to the 3' end of an RNA molecule and its ability to stimulate RNA elongation catalyzed by poly(A)polymerase I. In contrast, formation of the Hfq-RNA complex inhibits elongation of the RNA by polynucleotide phosphorylase. We demonstrate also that Hfq binding is not affected by the phosphorylation status of the RNA molecule and occurs equally well at terminal or internal stretches of poly(A).


Assuntos
Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/fisiologia , Fator Proteico 1 do Hospedeiro/metabolismo , Poli A/biossíntese , Polinucleotídeo Adenililtransferase/fisiologia , Poli A/química , Poli C/biossíntese , Polirribonucleotídeo Nucleotidiltransferase/fisiologia , RNA/química
15.
Adv Cancer Res ; 119: 161-90, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23870512

RESUMO

RNA degradation plays a fundamental role in maintaining cellular homeostasis whether it occurs as a surveillance mechanism eliminating aberrant mRNAs or during RNA processing to generate mature transcripts. 3'-5' exoribonucleases are essential mediators of RNA decay pathways, and one such evolutionarily conserved enzyme is polynucleotide phosphorylase (PNPase). The human homologue of this fascinating enzymatic protein (hPNPaseold-35) was cloned a decade ago in the context of terminal differentiation and senescence through a novel "overlapping pathway screening" approach. Since then, significant insights have been garnered about this exoribonuclease and its repertoire of expanding functions. The objective of this review is to provide an up-to-date perspective of the recent discoveries made relating to hPNPaseold-35 and the impact they continue to have on our comprehension of its expanding and diverse array of functions.


Assuntos
Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Polirribonucleotídeo Nucleotidiltransferase/genética , Polirribonucleotídeo Nucleotidiltransferase/fisiologia , Processamento Pós-Transcricional do RNA , RNA Mensageiro/química , Animais , Proteínas de Bactérias/química , Diferenciação Celular , Linhagem Celular Tumoral , Senescência Celular , Exorribonucleases/genética , Exorribonucleases/metabolismo , Homeostase , Humanos , Camundongos , Modelos Biológicos , Filogenia , Proteínas de Plantas/química , Estrutura Terciária de Proteína , RNA/metabolismo , RNA Mensageiro/genética , RNA Mitocondrial , Especificidade por Substrato
17.
Methods Mol Biol ; 553: 39-56, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19588100

RESUMO

DNA microarrays have become a mainstream tool in experimental plant biology. The constant improvements in the technological platforms have enabled the development of the tiling DNA microarrays that cover the whole genome, which in turn catalyzed the wide variety of creative applications of such microarrays in the areas as diverse as global studies of genetic variation, DNA-binding proteins, DNA methylation, and chromatin and transcriptome dynamics. This chapter attempts to summarize such applications as well as discusses some technical and strategic issues that are particular to the use of tiling microarrays.


Assuntos
Mapeamento Cromossômico , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Plantas/genética , Imunoprecipitação da Cromatina/métodos , Mapeamento Cromossômico/métodos , Endorribonucleases/antagonistas & inibidores , Endorribonucleases/fisiologia , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes/genética , Genoma de Planta/genética , Genoma de Planta/fisiologia , Complexos Multienzimáticos/antagonistas & inibidores , Complexos Multienzimáticos/fisiologia , Plantas/metabolismo , Polirribonucleotídeo Nucleotidiltransferase/antagonistas & inibidores , Polirribonucleotídeo Nucleotidiltransferase/fisiologia , RNA Helicases/antagonistas & inibidores , RNA Helicases/fisiologia , Estabilidade de RNA/fisiologia , Análise de Sequência de DNA/métodos
18.
J Bacteriol ; 189(5): 1866-73, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17189377

RESUMO

The impressive disease spectrum of Streptococcus pyogenes (the group A streptococcus [GAS]) is believed to be determined by its ability to modify gene expression in response to environmental stimuli. Virulence gene expression is controlled tightly by several different transcriptional regulators in this organism. In addition, expression of most, if not all, GAS genes is determined by a global mechanism dependent on growth phase. To begin an analysis of growth-phase regulation, we compared the transcriptome 2 h into stationary phase to that in late exponential phase of a serotype M3 GAS strain. We identified the arc transcript as more abundant in stationary phase in addition to the sag and sda transcripts that had been previously identified. We found that in stationary phase, the stability of sagA, sda, and arcT transcripts increased dramatically. We found that polynucleotide phosphorylase (PNPase [encoded by pnpA]) is rate limiting for decay of sagA and sda transcripts in late exponential phase, since the stability of these mRNAs was greater in a pnpA mutant, while stability of control mRNAs was unaffected by this mutation. Complementation restored the wild-type decay rate. Furthermore, in a pnpA mutant, the sagA mRNA appeared to be full length, as determined by Northern hybridization. It seems likely that mRNAs abundant in stationary phase are insensitive to the normal decay enzyme(s) and instead require PNPase for this process. It is possible that PNPase activity is limited in stationary phase, allowing persistence of these important virulence factor transcripts at this phase of growth.


Assuntos
Regulação Bacteriana da Expressão Gênica , Estabilidade de RNA , Streptococcus pyogenes/crescimento & desenvolvimento , Streptococcus pyogenes/genética , Polirribonucleotídeo Nucleotidiltransferase/fisiologia , Transcrição Gênica
19.
J Biomed Sci ; 14(4): 523-32, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17514363

RESUMO

The structure and function of polynucleotide phosphorylase (PNPase) and the exosome, as well as their associated RNA-helicases proteins, are described in the light of recent studies. The picture raised is of an evolutionarily conserved RNA-degradation machine which exonucleolytically degrades RNA from 3' to 5'. In prokaryotes and in eukaryotic organelles, a trimeric complex of PNPase forms a circular doughnut-shaped structure, in which the phosphorolysis catalytic sites are buried inside the barrel-shaped complex, while the RNA binding domains create a pore where RNA enters, reminiscent of the protein degrading complex, the proteasome. In some archaea and in the eukaryotes, several different proteins form a similar circle-shaped complex, the exosome, that is responsible for 3' to 5' exonucleolytic degradation of RNA as part of the processing, quality control, and general RNA degradation process. Both PNPase in prokaryotes and the exosome in eukaryotes are found in association with protein complexes that notably include RNA helicase.


Assuntos
Evolução Molecular , Polirribonucleotídeo Nucleotidiltransferase/química , Polirribonucleotídeo Nucleotidiltransferase/fisiologia , RNA Helicases/química , RNA Helicases/fisiologia , Estabilidade de RNA , Animais , Exonucleases/metabolismo , Humanos , Modelos Biológicos , Filogenia , Polirribonucleotídeo Nucleotidiltransferase/genética , RNA Helicases/genética , Relação Estrutura-Atividade
20.
Annu Rev Microbiol ; 61: 71-87, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17447862

RESUMO

The RNA degradosome of Escherichia coli is a multiprotein complex involved in the degradation of mRNA. The principal components are RNase E, PNPase, RhlB, and enolase. RNase E is a large multidomain protein with an N-terminal catalytic region and a C-terminal noncatalytic region that is mostly natively unstructured protein. The noncatalytic region contains sites for binding RNA and for protein-protein interactions with other components of the RNA degradosome. Several recent studies suggest that there are alternative forms of the RNA degradosome depending on growth conditions or other factors. These alternative forms appear to modulate RNase E activity in the degradation of mRNA. RNA degradosome-like complexes appear to be conserved throughout the Proteobacteria, but there is a surprising variability in composition that might contribute to the adaptation of these bacteria to the enormously wide variety of niches in which they live.


Assuntos
Endorribonucleases/fisiologia , Escherichia coli/enzimologia , Escherichia coli/genética , Complexos Multienzimáticos/fisiologia , Polirribonucleotídeo Nucleotidiltransferase/fisiologia , RNA Helicases/fisiologia , RNA Mensageiro/metabolismo , RNA Helicases DEAD-box/química , RNA Helicases DEAD-box/fisiologia , Endorribonucleases/química , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/fisiologia , Complexos Multienzimáticos/química , Fosfopiruvato Hidratase/química , Fosfopiruvato Hidratase/fisiologia , Filogenia , Polirribonucleotídeo Nucleotidiltransferase/química , RNA Helicases/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa