Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.581
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 183(1): 185-196.e14, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-33007262

RESUMO

Several HIV-1 and SIV vaccine candidates have shown partial protection against viral challenges in rhesus macaques. However, the protective efficacy of vaccine-elicited polyclonal antibodies has not previously been demonstrated in adoptive transfer studies in nonhuman primates. In this study, we show that passive transfer of purified antibodies from vaccinated macaques can protect naive animals against SIVmac251 challenges. We vaccinated 30 rhesus macaques with Ad26-SIV Env/Gag/Pol and SIV Env gp140 protein vaccines and assessed the induction of antibody responses and a putative protective signature. This signature included multiple antibody functions and correlated with upregulation of interferon pathways in vaccinated animals. Adoptive transfer of purified immunoglobulin G (IgG) from the vaccinated animals with the most robust protective signatures provided partial protection against SIVmac251 challenges in naive recipient rhesus macaques. These data demonstrate the protective efficacy of purified vaccine-elicited antiviral antibodies in this model, even in the absence of virus neutralization.


Assuntos
Imunização Passiva/métodos , Vacinas contra a SAIDS/imunologia , Vírus da Imunodeficiência Símia/imunologia , Vacinas contra a AIDS/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Formação de Anticorpos/imunologia , Produtos do Gene env/imunologia , Produtos do Gene gag/imunologia , Produtos do Gene pol/imunologia , HIV-1/imunologia , Imunoglobulina G/imunologia , Macaca mulatta/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia
2.
Cell ; 179(3): 632-643.e12, 2019 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-31607510

RESUMO

Antisense Piwi-interacting RNAs (piRNAs) guide silencing of established transposons during germline development, and sense piRNAs drive ping-pong amplification of the antisense pool, but how the germline responds to genome invasion is not understood. The KoRV-A gammaretrovirus infects the soma and germline and is sweeping through wild koalas by a combination of horizontal and vertical transfer, allowing direct analysis of retroviral invasion of the germline genome. Gammaretroviruses produce spliced Env mRNAs and unspliced transcripts encoding Gag, Pol, and the viral genome, but KoRV-A piRNAs are almost exclusively derived from unspliced genomic transcripts and are strongly sense-strand biased. Significantly, selective piRNA processing of unspliced proviral transcripts is conserved from insects to placental mammals. We speculate that bypassed splicing generates a conserved molecular pattern that directs proviral genomic transcripts to the piRNA biogenesis machinery and that this "innate" piRNA response suppresses transposition until antisense piRNAs are produced, establishing sequence-specific adaptive immunity.


Assuntos
Gammaretrovirus/genética , Phascolarctidae/genética , RNA Interferente Pequeno/genética , Animais , Elementos de DNA Transponíveis , Gammaretrovirus/metabolismo , Gammaretrovirus/patogenicidade , Produtos do Gene env/genética , Produtos do Gene env/metabolismo , Produtos do Gene gag/genética , Produtos do Gene gag/metabolismo , Produtos do Gene pol/genética , Produtos do Gene pol/metabolismo , Genoma , Células Germinativas/metabolismo , Células Germinativas/virologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Phascolarctidae/virologia , Splicing de RNA , RNA Antissenso/genética , RNA Antissenso/metabolismo , RNA Interferente Pequeno/metabolismo
3.
Genes Dev ; 38(15-16): 718-737, 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39168638

RESUMO

During human development, a temporary organ is formed, the placenta, which invades the uterine wall to support nutrient, oxygen, and waste exchange between the mother and fetus until birth. Most of the human placenta is formed by a syncytial villous structure lined by syncytialized trophoblasts, a specialized cell type that forms via cell-cell fusion of underlying progenitor cells. Genetic and functional studies have characterized the membrane protein fusogens Syncytin-1 and Syncytin-2, both of which are necessary and sufficient for human trophoblast cell-cell fusion. However, identification and characterization of upstream transcriptional regulators regulating their expression have been limited. Here, using CRISPR knockout in an in vitro cellular model of syncytiotrophoblast development (BeWo cells), we found that the transcription factor TFEB, mainly known as a regulator of autophagy and lysosomal biogenesis, is required for cell-cell fusion of syncytiotrophoblasts. TFEB translocates to the nucleus, exhibits increased chromatin interactions, and directly binds the Syncytin-1 and Syncytin-2 promoters to control their expression during differentiation. Although TFEB appears to play a critical role in syncytiotrophoblast differentiation, ablation of TFEB largely does not affect lysosomal gene expression or lysosomal biogenesis in differentiating BeWo cells, suggesting a previously uncharacterized role for TFEB in controlling the expression of human syncytins.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos , Fusão Celular , Produtos do Gene env , Proteínas da Gravidez , Trofoblastos , Humanos , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Proteínas da Gravidez/genética , Proteínas da Gravidez/metabolismo , Produtos do Gene env/genética , Produtos do Gene env/metabolismo , Trofoblastos/metabolismo , Trofoblastos/citologia , Linhagem Celular , Feminino , Diferenciação Celular/genética , Regiões Promotoras Genéticas/genética , Regulação da Expressão Gênica , Gravidez
4.
Genes Dev ; 38(15-16): 695-697, 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39174324

RESUMO

In the human placenta, cell fusion is crucial for forming the syncytiotrophoblast, a multinucleated giant cell essential for maintaining pregnancy and ensuring fetal health. The formation of the syncytiotrophoblast is catalyzed by the evolutionarily modern fusogens syncytin-1 and syncytin-2. In this issue of Genes & Development, Esbin and colleagues (doi:10.1101/gad.351633.124) reveal a critical role for the transcription factor TFEB in the regulation of syncytin expression and the promotion of trophoblast fusion. Notably, TFEB's pro-fusion role operates independently of its well-known functions in lysosome biogenesis and autophagy, suggesting that TFEB has acquired additional functions to promote cell fusion in the human placenta.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos , Fusão Celular , Produtos do Gene env , Placenta , Proteínas da Gravidez , Humanos , Proteínas da Gravidez/metabolismo , Proteínas da Gravidez/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Feminino , Placenta/metabolismo , Placenta/citologia , Gravidez , Produtos do Gene env/genética , Produtos do Gene env/metabolismo , Trofoblastos/metabolismo , Trofoblastos/citologia , Regulação da Expressão Gênica
5.
Annu Rev Cell Dev Biol ; 30: 111-39, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25000995

RESUMO

In biomembrane fusion pathways, membranes are destabilized through insertions of amphipathic protein segments, lipid reorganization via hemifusion, protein restructuring, and dimpling of the membranes. Four classes of membrane proteins are known in virus and cell fusion. Class I virus-cell fusion proteins (fusogens) are α-helix-rich prefusion trimers that form coiled-coil structures that insert hydrophobic fusion peptides or loops (FPs or FLs) into membranes and refold into postfusion trimers. Class II virus-cell fusogens are ß-sheet-rich prefusion homo- or heterodimers that insert FLs into membranes, ending in postfusion trimers. Class III virus-cell fusogens are trimers with both α-helices and ß-sheets that dissociate into monomers, insert FLs into membranes, and oligomerize into postfusion trimers. Class IV reoviral cell-cell fusogens are small proteins with FLs that oligomerize to fuse membranes. Class I cell-cell fusogens (Syncytins) were captured by mammals from retroviruses, and class II cell-cell fusogens (EFF-1/AFF-1) fuse membranes via homotypic zippering. Mechanisms and fusogens for most cell fusion events are unknown.


Assuntos
Fusão Celular , Fusão de Membrana , Proteínas Virais de Fusão/fisiologia , Animais , Produtos do Gene env/fisiologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/fisiologia , Humanos , Glicoproteínas de Membrana/fisiologia , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Proteínas da Gravidez/fisiologia , Conformação Proteica , Relação Estrutura-Atividade , Proteínas do Envelope Viral/fisiologia , Proteínas Virais de Fusão/química , Proteínas Virais de Fusão/classificação , Produtos do Gene env do Vírus da Imunodeficiência Humana/fisiologia
6.
J Virol ; 98(2): e0174223, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38193694

RESUMO

The HIV-1 Envelope (Env) protein cytoplasmic tail (CT) recently has been shown to assemble an unusual trimeric baseplate structure that locates beneath Env ectodomain trimers. Mutations at linchpin residues that help organize the baseplate impair virus replication in restrictive T cell lines but not in permissive cell lines. We have identified and characterized a second site suppressor of these baseplate mutations, located at residue 34 in the viral matrix (MA) protein, that rescues viral replication in restrictive cells. The suppressor mutation was dependent on the CT to exert its activity and did not appear to affect Env protein traffic or fusion functions in restrictive cells. Instead, the suppressor mutation increased Env incorporation into virions 3-fold and virus infectivity in single-round infections 10-fold. We also found that a previously described suppressor of Env-incorporation defects that stabilizes the formation of MA trimers was ineffective at rescuing Env baseplate mutations. Our results support an interpretation in which changes at MA residue 34 induce conformational changes that stabilize MA lattice trimer-trimer interactions and/or direct MA-CT associations.IMPORTANCEHow HIV-1 Env trimers assemble into virus particles remains incompletely understood. In restrictive cells, viral incorporation of Env is dependent on the Env CT and on the MA protein, which assembles lattices composed of hexamers of trimers in immature and mature viruses. Recent evidence indicates that CT assembles trimeric baseplate structures that require membrane-proximal residues to interface with trimeric transmembrane domains and C-terminal helices in the CT. We found that mutations of these membrane-proximal residues impaired replication in restrictive cells. This defect was countered by a MA mutation that does not localize to any obvious interprotein regions but was only inefficiently suppressed by a MA mutation that stabilizes MA trimers and has been shown to suppress other CT-dependent Env defects. Our results suggest that efficient suppression of baseplate mutations involves stabilization of MA inter-trimer contacts and/or direct MA-CT associations. These observations shed new light on how Env assembles into virions.


Assuntos
Produtos do Gene env , HIV-1 , Produtos do Gene env do Vírus da Imunodeficiência Humana , Antígenos Virais/genética , Linhagem Celular , Produtos do Gene env/química , Produtos do Gene env/genética , HIV-1/fisiologia , Mutação , Domínios Proteicos , Proteínas da Matriz Viral/metabolismo , Replicação Viral/genética , Produtos do Gene env do Vírus da Imunodeficiência Humana/química , Produtos do Gene env do Vírus da Imunodeficiência Humana/genética
7.
J Virol ; 98(4): e0177123, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38440982

RESUMO

Endogenous retroviruses (ERVs) are remnants of ancestral viral infections. Feline leukemia virus (FeLV) is an exogenous and endogenous retrovirus in domestic cats. It is classified into several subgroups (A, B, C, D, E, and T) based on viral receptor interference properties or receptor usage. ERV-derived molecules benefit animals, conferring resistance to infectious diseases. However, the soluble protein encoded by the defective envelope (env) gene of endogenous FeLV (enFeLV) functions as a co-factor in FeLV subgroup T infections. Therefore, whether the gene emerged to facilitate viral infection is unclear. Based on the properties of ERV-derived molecules, we hypothesized that the defective env genes possess antiviral activity that would be advantageous to the host because FeLV subgroup B (FeLV-B), a recombinant virus derived from enFeLV env, is restricted to viral transmission among domestic cats. When soluble truncated Env proteins from enFeLV were tested for their inhibitory effects against enFeLV and FeLV-B, they inhibited viral infection. Notably, this antiviral machinery was extended to infection with the Gibbon ape leukemia virus, Koala retrovirus A, and Hervey pteropid gammaretrovirus. Although these viruses used feline phosphate transporter 1 (fePit1) and phosphate transporter 2 as receptors, the inhibitory mechanism involved competitive receptor binding in a fePit1-dependent manner. The shift in receptor usage might have occurred to avoid the inhibitory effect. Overall, these findings highlight the possible emergence of soluble truncated Env proteins from enFeLV as a restriction factor against retroviral infection and will help in developing host immunity and antiviral defense by controlling retroviral spread.IMPORTANCERetroviruses are unique in using reverse transcriptase to convert RNA genomes into DNA, infecting germ cells, and transmitting to offspring. Numerous ancient retroviral sequences are known as endogenous retroviruses (ERVs). The soluble Env protein derived from ERVs functions as a co-factor that assists in FeLV-T infection. However, herein, we show that the soluble Env protein exhibits antiviral activity and provides resistance to mammalian retrovirus infection through competitive receptor binding. In particular, this finding may explain why FeLV-B transmission is not observed among domestic cats. ERV-derived molecules can benefit animals in an evolutionary arms race, highlighting the double-edged-sword nature of ERVs.


Assuntos
Produtos do Gene env , Vírus da Leucemia Felina , Leucemia Felina , Animais , Gatos , Retrovirus Endógenos/genética , Retrovirus Endógenos/metabolismo , Produtos do Gene env/genética , Produtos do Gene env/metabolismo , Vírus da Leucemia Felina/classificação , Vírus da Leucemia Felina/genética , Vírus da Leucemia Felina/metabolismo , Vírus da Leucemia do Macaco Gibão/genética , Vírus da Leucemia do Macaco Gibão/metabolismo , Leucemia Felina/genética , Leucemia Felina/metabolismo , Leucemia Felina/virologia , Proteínas de Transporte de Fosfato/genética , Proteínas de Transporte de Fosfato/metabolismo , Receptores Virais/metabolismo , Infecções por Retroviridae/metabolismo , Infecções por Retroviridae/virologia , Solubilidade , Feminino
8.
PLoS Biol ; 20(5): e3001506, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35609110

RESUMO

The impact of Coronavirus Disease 2019 (COVID-19) mRNA vaccination on pregnancy and fertility has become a major topic of public interest. We investigated 2 of the most widely propagated claims to determine (1) whether COVID-19 mRNA vaccination of mice during early pregnancy is associated with an increased incidence of birth defects or growth abnormalities; and (2) whether COVID-19 mRNA-vaccinated human volunteers exhibit elevated levels of antibodies to the human placental protein syncytin-1. Using a mouse model, we found that intramuscular COVID-19 mRNA vaccination during early pregnancy at gestational age E7.5 did not lead to differences in fetal size by crown-rump length or weight at term, nor did we observe any gross birth defects. In contrast, injection of the TLR3 agonist and double-stranded RNA mimic polyinosinic-polycytidylic acid, or poly(I:C), impacted growth in utero leading to reduced fetal size. No overt maternal illness following either vaccination or poly(I:C) exposure was observed. We also found that term fetuses from these murine pregnancies vaccinated prior to the formation of the definitive placenta exhibit high circulating levels of anti-spike and anti-receptor-binding domain (anti-RBD) antibodies to Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) consistent with maternal antibody status, indicating transplacental transfer in the later stages of pregnancy after early immunization. Finally, we did not detect increased levels of circulating anti-syncytin-1 antibodies in a cohort of COVID-19 vaccinated adults compared to unvaccinated adults by ELISA. Our findings contradict popular claims associating COVID-19 mRNA vaccination with infertility and adverse neonatal outcomes.


Assuntos
COVID-19 , Animais , Anticorpos Antivirais , COVID-19/prevenção & controle , Feminino , Feto , Produtos do Gene env , Humanos , Camundongos , Placenta/metabolismo , Gravidez , Proteínas da Gravidez , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , SARS-CoV-2 , Vacinação
9.
Mol Ther ; 32(7): 2328-2339, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38734900

RESUMO

Human T cell leukemia/T-lymphotropic virus type 1 (HTLV-1) infection occurs by cell-to-cell transmission and can induce fatal adult T cell leukemia. Vaccine development is critical for the control of HTLV-1 transmission. However, determining whether vaccine-induced anti-Env antibodies can prevent cell-to-cell HTLV-1 transmission is challenging. Here, we examined the protective efficacy of a vaccine inducing anti-Env antibodies against HTLV-1 challenge in cynomolgus macaques. Eight of 10 vaccinated macaques produced anti-HTLV-1 neutralizing antibodies (NAbs) and were protected from an intravenous challenge with 108 HTLV-1-producing cells. In contrast, the 2 vaccinated macaques without NAb induction and 10 unvaccinated controls showed HTLV-1 infection with detectable proviral load after challenge. Five of the eight protected macaques were administered with an anti-CD8 monoclonal antibody, but proviruses remained undetectable and no increase in anti-HTLV-1 antibodies was observed even after CD8+ cell depletion in three of them. Analysis of Env-specific T cell responses did not suggest involvement of vaccine-induced Env-specific T cell responses in the protection. These results indicate that anti-Env antibody induction by vaccination can result in functionally sterile HTLV-1 protection, implying the rationale for strategies aimed at anti-Env antibody induction in prophylactic HTLV-1 vaccine development.


Assuntos
Anticorpos Neutralizantes , Infecções por HTLV-I , Vírus Linfotrópico T Tipo 1 Humano , Vacinação , Animais , Vírus Linfotrópico T Tipo 1 Humano/imunologia , Infecções por HTLV-I/imunologia , Infecções por HTLV-I/prevenção & controle , Anticorpos Neutralizantes/imunologia , Humanos , Macaca fascicularis , Carga Viral , Linfócitos T CD8-Positivos/imunologia , Produtos do Gene env/imunologia , Anticorpos Antivirais/imunologia , Vacinas Virais/imunologia , Vacinas Virais/administração & dosagem , Modelos Animais de Doenças
10.
PLoS Genet ; 18(10): e1010458, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36240227

RESUMO

Endogenous retroviruses (ERVs) found in vertebrate genomes are remnants of retroviral invasions of their ancestral species. ERVs thus represent molecular fossil records of ancient retroviruses and provide a unique opportunity to study viral-host interactions, including cross-species transmissions, in deep time. While most ERVs contain the mutated remains of the original retrovirus, on rare occasions evolutionary selection pressures lead to the co-option/exaptation of ERV genes for a host function. Here, we report the identification of two ancient related non-orthologous ERV env genes, ARTenvV and CARenvV, that are preserved with large open reading frames (ORFs) in the mammalian orders Artiodactyla and Carnivora, respectively, but are not found in other mammals. These Env proteins lack a transmembrane motif, but phylogenetic analyses show strong sequence preservation and positive selection of the env surface ORF in their respective orders, and transcriptomic analyses show a broad tissue expression pattern for both ARTenvV and CARenvV, suggesting that these genes may be exapted for a host function. Multiple lines of evidence indicate that ARTenvV and CARenvV were derived from an ancient ancestral exogenous gamma-like retrovirus that was independently endogenized in two mammalian orders more than 60 million years ago, which roughly coincides with the K-Pg mass extinction event and subsequent mammalian diversification. Thus, these findings identify the oldest known retroviral cross-ordinal transmission of a gamma-like retrovirus with no known extant infectious counterpart in mammals, and the first discovery of the convergent co-option of an ERV gene derived from the same ancestral retrovirus in two different mammalian orders.


Assuntos
Retrovirus Endógenos , Animais , Retrovirus Endógenos/genética , Genes env , Filogenia , Mamíferos/genética , Produtos do Gene env/genética , Evolução Molecular
11.
Immunology ; 171(2): 270-276, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37985008

RESUMO

The role of retroviral envelope proteins belonging to the Human Endogenous Retroviral family 'W' (HERV-W), specifically syncytin-1 and pathogenic HERV-W (pHERV-W), as potential risk factors in multiple sclerosis (MS) has been established. This study aimed to investigate the humoral response to syncytin-1 and pHERV-W-derived peptides in a group of relapsing remitting MS patients categorized as having acute or stable disease. Furthermore, an inhibition assay was conducted to assess the extent of cross-reactivity between the two epitopes. The findings revealed that MS patients in the acute phase exhibited a higher specific antibody response to the pHERV-W env epitope compared to syncytin-1. This suggests a potential pathogenic role for pHERV-W env during the inflammatory stages of central nervous system involvement, and these antibody responses could serve as useful biomarkers for monitoring the progression of the disease.


Assuntos
Retrovirus Endógenos , Esclerose Múltipla , Proteínas da Gravidez , Humanos , Produtos do Gene env/genética , Produtos do Gene env/metabolismo , Proteínas da Gravidez/metabolismo , Anticorpos , Retrovirus Endógenos/metabolismo
12.
Mol Biol Evol ; 40(5)2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-37062963

RESUMO

Independently acquired envelope (env) genes from endogenous retroviruses have contributed to the placental trophoblast cell-cell fusion in therian mammals. Egg-laying mammals (monotremes) are an important sister clade for understanding mammalian placental evolution, but the env genes in their genomes have yet to be investigated. Here, env-derived open reading frames (env-ORFs) encoding more than 400 amino acid lengths were searched in the genomes of two monotremes: platypus and echidna. Only two env-ORFs were present in the platypus genome, whereas 121 env-ORFs were found in the echidna genome. The echidna env-ORFs were phylogenetically classified into seven groups named env-Tac1 to -Tac7. Among them, the env-Tac1 group contained only a single gene, and its amino acid sequence showed high similarity to those of the RD114/simian type D retroviruses. Using the pseudotyped virus assay, we demonstrated that the Env-Tac1 protein utilizes echidna sodium-dependent neutral amino acid transporter type 1 and 2 (ASCT1 and ASCT2) as entry receptors. Moreover, the Env-Tac1 protein caused cell-cell fusion in human 293T cells depending on the expression of ASCT1 and ASCT2. These results illustrate that fusogenic env genes are not restricted to placental mammals, providing insights into the evolution of retroviral genes and the placenta.


Assuntos
Retrovirus Endógenos , Ornitorrinco , Tachyglossidae , Animais , Gravidez , Feminino , Humanos , Genes env , Placenta , Ornitorrinco/genética , Tachyglossidae/genética , Produtos do Gene env/genética , Mamíferos/genética
13.
PLoS Pathog ; 18(6): e1010507, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35714165

RESUMO

The HIV/SIV envelope glycoprotein (Env) cytoplasmic domain contains a highly conserved Tyr-based trafficking signal that mediates both clathrin-dependent endocytosis and polarized sorting. Despite extensive analysis, the role of these functions in viral infection and pathogenesis is unclear. An SIV molecular clone (SIVmac239) in which this signal is inactivated by deletion of Gly-720 and Tyr-721 (SIVmac239ΔGY), replicates acutely to high levels in pigtail macaques (PTM) but is rapidly controlled. However, we previously reported that rhesus macaques and PTM can progress to AIDS following SIVmac239ΔGY infection in association with novel amino acid changes in the Env cytoplasmic domain. These included an R722G flanking the ΔGY deletion and a nine nucleotide deletion encoding amino acids 734-736 (ΔQTH) that overlaps the rev and tat open reading frames. We show that molecular clones containing these mutations reconstitute signals for both endocytosis and polarized sorting. In one PTM, a novel genotype was selected that generated a new signal for polarized sorting but not endocytosis. This genotype, together with the ΔGY mutation, was conserved in association with high viral loads for several months when introduced into naïve PTMs. For the first time, our findings reveal strong selection pressure for Env endocytosis and particularly for polarized sorting during pathogenic SIV infection in vivo.


Assuntos
Síndrome de Imunodeficiência Adquirida dos Símios , Vírus da Imunodeficiência Símia , Animais , Endocitose , Produtos do Gene env/genética , Macaca mulatta/metabolismo , Macaca nemestrina , Síndrome de Imunodeficiência Adquirida dos Símios/genética , Síndrome de Imunodeficiência Adquirida dos Símios/patologia , Vírus da Imunodeficiência Símia/genética , Vírus da Imunodeficiência Símia/metabolismo
14.
PLoS Pathog ; 18(1): e1010183, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34986207

RESUMO

Antibodies are principal immune components elicited by vaccines to induce protection from microbial pathogens. In the Thai RV144 HIV-1 vaccine trial, vaccine efficacy was 31% and the sole primary correlate of reduced risk was shown to be vigorous antibody response targeting the V1V2 region of HIV-1 envelope. Antibodies against V3 also were inversely correlated with infection risk in subsets of vaccinees. Antibodies recognizing these regions, however, do not exhibit potent neutralizing activity. Therefore, we examined the antiviral potential of poorly neutralizing monoclonal antibodies (mAbs) against immunodominant V1V2 and V3 sites by passive administration of human mAbs to humanized mice engrafted with CD34+ hematopoietic stem cells, followed by mucosal challenge with an HIV-1 infectious molecular clone expressing the envelope of a tier 2 resistant HIV-1 strain. Treatment with anti-V1V2 mAb 2158 or anti-V3 mAb 2219 did not prevent infection, but V3 mAb 2219 displayed a superior potency compared to V1V2 mAb 2158 in reducing virus burden. While these mAbs had no or weak neutralizing activity and elicited undetectable levels of antibody-dependent cellular cytotoxicity (ADCC), V3 mAb 2219 displayed a greater capacity to bind virus- and cell-associated HIV-1 envelope and to mediate antibody-dependent cellular phagocytosis (ADCP) and C1q complement binding as compared to V1V2 mAb 2158. Mutations in the Fc region of 2219 diminished these effector activities in vitro and lessened virus control in humanized mice. These results demonstrate the importance of Fc functions other than ADCC for antibodies without potent neutralizing activity.


Assuntos
Produtos do Gene env/imunologia , Anticorpos Anti-HIV/farmacologia , Infecções por HIV , Carga Viral/efeitos dos fármacos , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/farmacologia , Anticorpos Anti-HIV/imunologia , HIV-1/imunologia , Humanos , Imunização Passiva , Regiões Constantes de Imunoglobulina , Camundongos , Mucosa
15.
Proc Natl Acad Sci U S A ; 118(13)2021 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-33771926

RESUMO

Infection with human and simian immunodeficiency viruses (HIV/SIV) requires binding of the viral envelope glycoprotein (Env) to the host protein CD4 on the surface of immune cells. Although invariant in humans, the Env binding domain of the chimpanzee CD4 is highly polymorphic, with nine coding variants circulating in wild populations. Here, we show that within-species CD4 diversity is not unique to chimpanzees but found in many African primate species. Characterizing the outermost (D1) domain of the CD4 protein in over 500 monkeys and apes, we found polymorphic residues in 24 of 29 primate species, with as many as 11 different coding variants identified within a single species. D1 domain amino acid replacements affected SIV Env-mediated cell entry in a single-round infection assay, restricting infection in a strain- and allele-specific fashion. Several identical CD4 polymorphisms, including the addition of N-linked glycosylation sites, were found in primate species from different genera, providing striking examples of parallel evolution. Moreover, seven different guenons (Cercopithecus spp.) shared multiple distinct D1 domain variants, pointing to long-term trans-specific polymorphism. These data indicate that the HIV/SIV Env binding region of the primate CD4 protein is highly variable, both within and between species, and suggest that this diversity has been maintained by balancing selection for millions of years, at least in part to confer protection against primate lentiviruses. Although long-term SIV-infected species have evolved specific mechanisms to avoid disease progression, primate lentiviruses are intrinsically pathogenic and have left their mark on the host genome.


Assuntos
Síndrome da Imunodeficiência Adquirida/genética , Antígenos CD4/genética , Catarrinos/genética , Catarrinos/virologia , Variação Genética , HIV , Síndrome de Imunodeficiência Adquirida dos Símios/genética , Vírus da Imunodeficiência Símia , Alelos , Animais , Antígenos CD4/química , Evolução Molecular , Produtos do Gene env/química , Humanos , Ligação Proteica , Domínios Proteicos
16.
Drug Dev Res ; 85(6): e22254, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39234934

RESUMO

Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease. Syncytin-1 (Syn), an envelope glycoprotein encoded by the env gene of the human endogenous retrovirus-W family, has been resorted to be highly expressed in biopsies from the muscles from ALS patients; however, the specific regulatory role of Syn during ALS progression remains uncovered. In this study, C57BL/6 mice were injected with adeno-associated virus-overexpressing Syn, with or without Fasudil administration. The Syn expression was assessed by quantitative real-time polymerase chain reaction and immunohistochemistry analysis. The histological change of anterior tibial muscles was determined by hematoxylin-eosin staining. Qualitative ultrastructural analysis of electron micrographs obtained from lumbar spinal cords was carried out. Serum inflammatory cytokines were assessed by enzyme linked immunosorbent assay (ELISA) assay and motor function was recorded using Basso, Beattie, and Bresnahan (BBB) scoring, climbing test and treadmill running test. Immunofluorescence and western blot assays were conducted to examine microglial- and motor neurons-related proteins. Syn overexpression significantly caused systemic inflammatory response, muscle tissue lesions, and motor dysfunction in mice. Meanwhile, Syn overexpression promoted the impairment of motor neuron, evidenced by the damaged structure of the neurons and reduced expression of microtubule-associated protein 2, HB9, neuronal nuclei and neuron-specific enolase in Syn-induced mice. In addition, Syn overexpression greatly promoted the expression of CD16/CD32 and inducible nitric oxide synthase (M1 phenotype markers), and reduced the expression of CD206 and arginase 1 (M2 phenotype markers). Importantly, the above changes caused by Syn overexpression were partly abolished by Fasudil administration. This study provides evidence that Syn-activated microglia plays a pivotal role during the progression of ALS.


Assuntos
1-(5-Isoquinolinasulfonil)-2-Metilpiperazina , Camundongos Endogâmicos C57BL , Microglia , Neurônios Motores , Animais , Microglia/efeitos dos fármacos , Microglia/metabolismo , Neurônios Motores/efeitos dos fármacos , Neurônios Motores/metabolismo , Camundongos , 1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/análogos & derivados , 1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/farmacologia , Produtos do Gene env , Esclerose Lateral Amiotrófica/tratamento farmacológico , Esclerose Lateral Amiotrófica/metabolismo , Proteínas da Gravidez/metabolismo , Masculino , Citocinas/metabolismo , Modelos Animais de Doenças , Atividade Motora/efeitos dos fármacos , Medula Espinal/metabolismo , Medula Espinal/efeitos dos fármacos
17.
Int J Mol Sci ; 25(11)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38891857

RESUMO

Cell fusion is a biological process that is crucial for the development and homeostasis of different tissues, but it is also pathophysiologically associated with tumor progression and malignancy. The investigation of cell fusion processes is difficult because there is no standardized marker. Many studies therefore use different systems to observe and quantify cell fusion in vitro and in vivo. The comparability of the results must be critically questioned, because both the experimental procedure and the assays differ between studies. The comparability of the fluorescence-based fluorescence double reporter (FDR) and dual split protein (DSP) assay was investigated as part of this study, in which general conditions were kept largely constant. In order to be able to induce both a high and a low cell fusion rate, M13SV1 breast epithelial cells were modified with regard to the expression level of the fusogenic protein Syncytin-1 and its receptor ASCT2 and were co-cultivated for 72 h with different breast cancer cell lines. A high number of fused cells was found in co-cultures with Syncytin-1-overexpressing M13SV1 cells, but differences between the assays were also observed. This shows that the quantification of cell fusion events in particular is highly dependent on the assay selected, but the influence of fusogenic proteins can be visualized very well.


Assuntos
Neoplasias da Mama , Fusão Celular , Humanos , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/genética , Feminino , Linhagem Celular Tumoral , Técnicas de Cocultura , Proteínas da Gravidez , Produtos do Gene env
18.
J Virol ; 96(8): e0207221, 2022 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-35389232

RESUMO

Retroviruses are widely distributed in all vertebrates, as are their endogenous forms, endogenous retroviruses (ERV), which serve as "fossil" evidence to trace the ancient origins and history of virus-host interactions over millions of years. The retroviral envelope (Env) plays a significant role in host range determination, but major information on their genetic diversification and evolution in anamniotes is lacking. Here, by incorporating multiple-round in silico similarity search and phylogenomic analysis, more than 30,000 copies of ERV lineages with gamma-type Env (GTE), covalently associated Env, were discovered by searching against all fish and amphibian genomes and transcriptomic assemblies, but no beta-type Env (BTE), noncovalently associated Env, was found. Furthermore, a nine-type classification system of anamniote GTE was proposed by combining phylogenetic and domain/motif analyses. The elastic genomic organization and overall phylogenetic incongruence between anamniotic Env and its neighboring polymerase (Pol) implied that early retroviral diversification in anamniotic vertebrates was facilitated by frequent recombination. At last, host cellular opioid growth factor receptor (OGFr) gene capturing by anamniotic ERVs with GTE was reported for the first time. Overall, our findings overturn traditional Pol genotyping and reveal a complex evolutionary history of anamniotic retroviruses inferred by Env evolution. IMPORTANCE Although the retroviral envelope (Env) protein in amniotes has been well studied, its evolutionary history in anamniotic vertebrates is ambiguous. By analyzing more than 30,000 copies of ERV lineages with gamma-type Env (GTE) in anamniotes, several important evolutionary features were identified. First, GTE was found to be widely distributed among different amphibians and fish. Second, nine types of GTE were discovered and defined, revealing their great genetic diversity. Third, the incongruence between the Env and Pol phylogenies suggested that frequent recombination shaped the early evolution of anamniote retroviruses. Fourth, an ancient horizontal gene transfer event was discovered from anamniotes to ERVs with GTE. These findings reveal a complex evolution pattern for retroviral Env in anamniotes.


Assuntos
Retrovirus Endógenos , Evolução Molecular , Produtos do Gene env , Variação Genética , Animais , Retrovirus Endógenos/classificação , Retrovirus Endógenos/genética , Produtos do Gene env/genética , Filogenia , Vertebrados/genética
19.
J Virol ; 96(2): e0134821, 2022 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-34705555

RESUMO

The surface envelope glycoproteins of nonprimate lentiviruses and betaretroviruses share sequence similarity with the inner proximal domain ß-sandwich of the human immunodeficiency virus type 1 (HIV-1) gp120 glycoprotein that faces the transmembrane glycoprotein as well as patterns of cysteine and glycosylation site distribution that points to a similar two-domain organization in at least some lentiviruses. Here, high-reliability models of the surface glycoproteins obtained with the AlphaFold algorithm are presented for the gp135 glycoprotein of the small ruminant caprine arthritis-encephalitis (CAEV) and visna lentiviruses and the betaretroviruses Jaagsiekte sheep retrovirus (JSRV), mouse mammary tumor virus (MMTV), and consensus human endogenous retrovirus type K (HERV-K). The models confirm and extend the inner domain structural conservation in these viruses and identify two outer domains with a putative receptor binding site in the CAEV and visna virus gp135. The location of that site is consistent with patterns of sequence conservation and glycosylation site distribution in gp135. In contrast, a single domain is modeled for the JSRV, MMTV, and HERV-K betaretrovirus envelope proteins that is highly conserved structurally in the proximal region and structurally diverse in apical regions likely to interact with cell receptors. The models presented here identify sites in small ruminant lentivirus and betaretrovirus envelope glycoproteins likely to be critical for virus entry and virus neutralization by antibodies and will facilitate their functional and structural characterization. IMPORTANCE Structural information on the surface envelope proteins of lentiviruses and related betaretroviruses is critical to understand mechanisms of virus-host interactions. However, experimental determination of these structures has been challenging, and only the structure of the human immunodeficiency virus type 1 gp120 has been determined. The advent of the AlphaFold artificial intelligence method for structure prediction allows high-quality modeling of the structures of small ruminant lentiviral and betaretroviral surface envelope proteins. The models are consistent with much of the previously described experimental data, show regions likely to interact with receptors, and identify domains that may be involved in mechanisms of antibody neutralization resistance in the small ruminant lentiviruses. The models will allow more precise design of mutants to further determine mechanisms of viral entry and immune evasion in this group of viruses and constructs for structural determination of these surface envelope proteins.


Assuntos
Algoritmos , Betaretrovirus/química , Produtos do Gene env/química , Lentivirus/química , Sequência de Aminoácidos , Animais , Sítios de Ligação , Sequência Conservada , Retrovirus Endógenos/química , Produtos do Gene env/metabolismo , Humanos , Modelos Moleculares , Ligação Proteica , Domínios Proteicos , Receptores Virais/metabolismo , Ruminantes
20.
J Virol ; 96(7): e0187821, 2022 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-35289647

RESUMO

Binding to the receptor, CD4, drives the pretriggered, "closed" (State-1) conformation of the human immunodeficiency virus (HIV-1) envelope glycoprotein (Env) trimer ([gp120/gp41]3) into more "open" conformations. HIV-1 Env on the viral membrane is maintained in a State-1 conformation that resists binding and neutralization by commonly elicited antibodies. Premature triggering of Env before the virus engages a target cell typically leads to increased susceptibility to spontaneous inactivation or ligand-induced neutralization. Here, we showed that single amino acid substitutions in the gp41 membrane-proximal external region (MPER) of a primary HIV-1 strain resulted in viral phenotypes indicative of premature triggering of Env to downstream conformations. Specifically, the MPER changes reduced viral infectivity and globally increased virus sensitivity to poorly neutralizing antibodies, soluble CD4, a CD4-mimetic compound, and exposure to cold. In contrast, the MPER mutants exhibited decreased sensitivity to the State 1-preferring inhibitor, BMS-806, and to the PGT151 broadly neutralizing antibody. Depletion of cholesterol from virus particles did not produce the same State 1-destabilizing phenotypes as MPER alterations. Notably, State 1-stabilizing changes in Env distant from the MPER could minimize the phenotypic effects of MPER alteration but did not affect virus sensitivity to cholesterol depletion. Thus, membrane-proximal gp41 elements contribute to the maintenance of the pretriggered Env conformation. The conformationally disruptive effects of MPER changes can be minimized by distant State 1-stabilizing Env modifications, a strategy that may be useful in preserving the native pretriggered state of Env. IMPORTANCE The pretriggered shape of the human immunodeficiency virus (HIV-1) envelope glycoprotein (Env) is a major target for antibodies that can neutralize many strains of the virus. An effective HIV-1 vaccine may need to raise these types of antibodies, but this goal has proven difficult. One reason is that the pretriggered shape of Env is unstable and dependent on interactions near the viral membrane. Here, we showed that the membrane-proximal external region (MPER) of Env plays an important role in maintaining Env in a pretriggered shape. Alterations in the MPER resulted in global changes in Env conformation that disrupted its pretriggered shape. We also found that these disruptive effects of MPER changes could be minimized by distant Env modifications that stabilized the pretriggered shape. These modifications may be useful for preserving the native shape of Env for structural and vaccine studies.


Assuntos
Infecções por HIV , HIV-1 , Anticorpos Neutralizantes , Produtos do Gene env/química , Produtos do Gene env/imunologia , Glicoproteínas/química , Anticorpos Anti-HIV/imunologia , Proteína gp120 do Envelope de HIV/imunologia , Proteína gp41 do Envelope de HIV/química , Proteína gp41 do Envelope de HIV/imunologia , Infecções por HIV/imunologia , Infecções por HIV/virologia , HIV-1/química , HIV-1/imunologia , Humanos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa