Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Free Radic Res ; 56(1): 63-76, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35109721

RESUMO

Oxidative stress is an important contributor to the development of osteoporosis. Melatonin, an indoleamine secreted by the pineal gland, has antioxidant properties. This study aims to explore whether melatonin can promote bone formation and elucidate the mechanisms underlying this process. In this study, we used an in vitro hydrogen peroxide (H2O2)-induced oxidative stress model in MC3T3-E1 cells and an in vivo ovariectomized osteoporotic bone defect model in rats to explore the protective effects of melatonin against osteoporotic bone defects along with the mechanism underlying these effects. We found that melatonin significantly increased alkaline phosphatase activity, mineralization capacity, and the expression of BMP2, RUNX2, and OPN in MC3T3-E1 cells treated with H2O2. Furthermore, melatonin was found to activate SIRT1, SIRT3 and inhibit p66Shc, reduce the intracellular reactive oxygen species levels, stabilize mitochondria, reduce malondialdehyde levels, increase superoxide dismutase activity, and reduce apoptosis in MC3T3-E1 cells treated with H2O2. Intriguingly, these effects could be reversed by the SIRT1 inhibitor EX527. In vivo experiments confirmed that melatonin improves the microstructure and bone mineral density of the distal femoral bone trabecula and promotes bone formation. Meanwhile, melatonin activated SIRT1, inhibited p66Shc and increased SIRT3 expression. Taken together, our findings showed that melatonin can restrain oxidative damage in MC3T3-E1 cells and promote osteogenesis by activating SIRT1 which regulate the activity of SIRT3 and inhibit the expression of p66Shc, suggesting that melatonin could be a potential therapeutic agent for osteoporosis-related bone metabolic diseases.


Assuntos
Melatonina , Osteoporose , Sirtuína 3 , Animais , Peróxido de Hidrogênio/metabolismo , Melatonina/farmacologia , Melatonina/uso terapêutico , Osteoblastos/metabolismo , Osteogênese , Osteoporose/induzido quimicamente , Osteoporose/tratamento farmacológico , Osteoporose/metabolismo , Estresse Oxidativo , Ratos , Sirtuína 1/genética , Sirtuína 1/metabolismo , Sirtuína 3/genética , Sirtuína 3/metabolismo , Proteína 1 de Transformação que Contém Domínio 2 de Homologia de Src/metabolismo , Proteína 1 de Transformação que Contém Domínio 2 de Homologia de Src/farmacologia , Proteína 1 de Transformação que Contém Domínio 2 de Homologia de Src/uso terapêutico
2.
Oxid Med Cell Longev ; 2018: 5837123, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29849902

RESUMO

Airway epithelial mitochondrial injury plays a critical role in the pathogenesis of chronic obstructive pulmonary disease (COPD). The p66Shc adaptor protein is a newly recognized mediator of mitochondrial dysfunction. However, little is known about the effect of p66Shc on airway epithelial damage in the development of COPD. The aim of the present study is to investigate the roles of p66Shc and its upstream regulators in the mitochondrial injury of airway epithelial cells (Beas-2b) induced by cigarette smoke extract (CSE). Our present study revealed that CSE increased p66Shc expression and its mitochondrial translocation in concentration and time-dependent manners in airway epithelial cells. And p66Shc siRNA significantly attenuated mitochondrial dysfunction and cell injury when airway epithelial cells were stimulated with 7.5% CSE. The total and phosphorylated expression of PKCß and PKCδ was significantly increased associated with mitochondrial dysfunction and cell injury when airway epithelial cells were exposed to 7.5% CSE. The pretreatments with pharmacological inhibitors of PKCß and PKCδ could notably suppress p66Shc phosphorylation and its mitochondrial translocation and protect the mitochondria and cells against oxidative damage when airway epithelial cells were incubated with 7.5% CSE. These data suggest that a novel PKCß/δ-p66Shc signaling pathway may be involved in the pathogenesis of COPD and other oxidative stress-associated pulmonary diseases and provide a potential therapeutic target for these diseases.


Assuntos
Brônquios/patologia , Células Epiteliais/patologia , Mitocôndrias/metabolismo , Fragmentos de Peptídeos/metabolismo , Proteína Quinase C/metabolismo , Proteína 1 de Transformação que Contém Domínio 2 de Homologia de Src/uso terapêutico , Humanos , Transdução de Sinais , Fumar , Proteína 1 de Transformação que Contém Domínio 2 de Homologia de Src/farmacologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa