Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 168
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(21): e2318591121, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38739802

RESUMO

The transcription factor p73, a member of the p53 tumor-suppressor family, regulates cell death and also supports tumorigenesis, although the mechanistic basis for the dichotomous functions is poorly understood. We report here the identification of an alternate transactivation domain (TAD) located at the extreme carboxyl (C) terminus of TAp73ß, a commonly expressed p73 isoform. Mutational disruption of this TAD significantly reduced TAp73ß's transactivation activity, to a level observed when the amino (N)-TAD that is similar to p53's TAD, is mutated. Mutation of both TADs almost completely abolished TAp73ß's transactivation activity. Expression profiling highlighted a unique set of targets involved in extracellular matrix-receptor interaction and focal adhesion regulated by the C-TAD, resulting in FAK phosphorylation, distinct from the N-TAD targets that are common to p53 and are involved in growth inhibition. Interestingly, the C-TAD targets are also regulated by the oncogenic, amino-terminal-deficient DNp73ß isoform. Consistently, mutation of C-TAD reduces cellular migration and proliferation. Mechanistically, selective binding of TAp73ß to DNAJA1 is required for the transactivation of C-TAD target genes, and silencing DNAJA1 expression abrogated all C-TAD-mediated effects. Taken together, our results provide a mechanistic basis for the dichotomous functions of TAp73 in the regulation of cellular growth through its distinct TADs.


Assuntos
Proliferação de Células , Domínios Proteicos , Ativação Transcricional , Proteína Tumoral p73 , Proteína Tumoral p73/metabolismo , Proteína Tumoral p73/genética , Humanos , Movimento Celular/genética , Mutação , Linhagem Celular Tumoral , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/genética , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , Fosforilação , Proteínas Supressoras de Tumor/metabolismo , Proteínas Supressoras de Tumor/genética
2.
J Pathol ; 263(3): 328-337, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38629257

RESUMO

Peritoneal metastasis of colorectal origin appears in ~10-15% of patients at the time of diagnosis and in 30-40% of cases with disease progression. Locoregional spread through the peritoneum is considered stage IVc and is associated with a poor prognosis. The development of a regional therapeutic strategy based on cytoreductive surgery, and hyperthermic intra-abdominal chemotherapy has significantly altered the course of the disease. Although recent evidence supports the benefits of cytoreductive surgery, the benefits of hyperthermic intra-abdominal chemotherapy are, however, still a matter of debate. Understanding the molecular alterations underlying the disease is crucial for developing new therapeutic strategies. Here, we evaluated the involvement in peritoneal dissemination of the oncogenic isoform of TP73, ΔNp73, and its effector targets in in vitro and mouse models, and in 30 patients diagnosed with colorectal peritoneal metastasis. In an orthotopic mouse model, we observed that tumor cells overexpressing ΔNp73 present a higher avidity for the peritoneum and that extracellular vesicles secreted by ΔNp73-upregulating tumor cells enhance their dissemination. In addition, we identified that tumor cells overexpressing ΔNp73 present with dysregulation of genes associated with an epithelial/mesothelial-to-mesenchymal transition (MMT) and that mesothelial cells exposed to the conditioned medium of tumor cells with upregulated ΔNp73 present a mesenchymal phenotype. Lastly, ΔNp73 and its effector target RNAs were dysregulated in our patient series, there were positive correlations between ΔNp73 and its effector targets, and MSN and ITGB4 (ΔNp73 effectors) predicted patient survival. In conclusion, ΔNp73 and its effector targets are involved in the peritoneal dissemination of colorectal cancer and predict patient survival. The promotion of the EMT/MMT and modulation of the adhesion capacity in colorectal cancer cells might be the mechanisms triggered by ΔNp73. Remarkably, ΔNp73 protein is a druggable protein and should be the focus of future studies. © 2024 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Assuntos
Neoplasias Colorretais , Transição Epitelial-Mesenquimal , Neoplasias Peritoneais , Proteína Tumoral p73 , Humanos , Neoplasias Colorretais/patologia , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Neoplasias Peritoneais/secundário , Neoplasias Peritoneais/genética , Neoplasias Peritoneais/metabolismo , Neoplasias Peritoneais/patologia , Animais , Masculino , Feminino , Proteína Tumoral p73/metabolismo , Proteína Tumoral p73/genética , Pessoa de Meia-Idade , Idoso , Camundongos , Regulação Neoplásica da Expressão Gênica , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral
3.
Proc Natl Acad Sci U S A ; 119(22): e2123202119, 2022 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-35617425

RESUMO

p73, a p53 family member, undergoes alternative splicing at the 3' end to produce multiple isoforms, but their expression and activity are largely unknown. Thus, CRISPR was used to knock out exon 12 (E12) in human cancer cell lines and mice, leading to isoform switch from p73α to isoform p73α1. We found that p73α1 is naturally expressed and induced by DNA damage. We also found that knockout of E12 suppresses cell growth and migration in H1299 and MIA PaCa-2 cells and promotes cellular senescence in mouse embryonic fibroblasts. Similarly, ectopic expression of p73α1 suppresses cell proliferation, whereas knockdown of p73α1 restores the cell proliferative and migratory capacities of E12−/− cells. Consistently, we found that E12+/− mice are not prone to spontaneous tumors. Instead, E12+/− mice are prone to systemic inflammation and exhibit elevated TNFα expression in inflamed tissues. Moreover, we found that Notch1, a master regulator of the inflammatory response, is regulated by p73α1 and highly expressed in E12−/− cells and inflamed E12+/− mouse tissues. Furthermore, through knockdown of p73α1 and/or Notch1 in E12−/− cells, we found that Notch1 is necessary for p73α1-mediated growth suppression. Together, these data suggest that p73α1 plays a critical role in tumor suppression and the inflammatory response via Notch1.


Assuntos
Genes Supressores de Tumor , Inflamação , Neoplasias , Receptor Notch1 , Proteína Tumoral p73 , Animais , Linhagem Celular Tumoral , Dano ao DNA , Éxons/genética , Técnicas de Inativação de Genes , Humanos , Inflamação/genética , Camundongos , Camundongos Knockout , Neoplasias/genética , Neoplasias/patologia , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Receptor Notch1/genética , Receptor Notch1/metabolismo , Proteína Tumoral p73/genética , Proteína Tumoral p73/metabolismo
4.
Genes Dev ; 31(17): 1738-1753, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28971956

RESUMO

Medulloblastoma is the most common solid primary brain tumor in children. Remarkable advancements in the understanding of the genetic and epigenetic basis of these tumors have informed their recent molecular classification. However, the genotype/phenotype correlation of the subgroups remains largely uncharacterized. In particular, the metabolic phenotype is of great interest because of its druggability, which could lead to the development of novel and more tailored therapies for a subset of medulloblastoma. p73 plays a critical role in a range of cellular metabolic processes. We show overexpression of p73 in a proportion of non-WNT medulloblastoma. In these tumors, p73 sustains cell growth and proliferation via regulation of glutamine metabolism. We validated our results in a xenograft model in which we observed an increase in survival time in mice on a glutamine restriction diet. Notably, glutamine starvation has a synergistic effect with cisplatin, a component of the current medulloblastoma chemotherapy. These findings raise the possibility that glutamine depletion can be used as an adjuvant treatment for p73-expressing medulloblastoma.


Assuntos
Neoplasias Cerebelares/dietoterapia , Neoplasias Cerebelares/fisiopatologia , Glutamina/metabolismo , Meduloblastoma/dietoterapia , Meduloblastoma/fisiopatologia , Proteína Tumoral p73/genética , Proteína Tumoral p73/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Linhagem Celular Tumoral , Proliferação de Células/genética , Modelos Animais de Doenças , Regulação Neoplásica da Expressão Gênica/genética , Glutaminase/genética , Glutaminase/metabolismo , Xenoenxertos , Humanos , Camundongos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Análise de Sobrevida , Serina-Treonina Quinases TOR/metabolismo , Resultado do Tratamento , Células Tumorais Cultivadas
5.
Am J Hum Genet ; 108(7): 1318-1329, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34077761

RESUMO

TP73 belongs to the TP53 family of transcription factors and has therefore been well studied in cancer research. Studies in mice, however, have revealed non-oncogenic activities related to multiciliogenesis. Utilizing whole-exome sequencing analysis in a cohort of individuals with a mucociliary clearance disorder and cortical malformation, we identified homozygous loss-of-function variants in TP73 in seven individuals from five unrelated families. All affected individuals exhibit a chronic airway disease as well as a brain malformation consistent with lissencephaly. We performed high-speed video microscopy, immunofluorescence analyses, and transmission electron microscopy in respiratory epithelial cells after spheroid or air liquid interface culture to analyze ciliary function, ciliary length, and number of multiciliated cells (MCCs). The respiratory epithelial cells studied display reduced ciliary length and basal bodies mislocalized within the cytoplasm. The number of MCCs is severely reduced, consistent with a reduced number of cells expressing the transcription factors crucial for multiciliogenesis (FOXJ1, RFX2). Our data demonstrate that autosomal-recessive deleterious variants in the TP53 family member TP73 cause a mucociliary clearance disorder due to a defect in MCC differentiation.


Assuntos
Lisencefalia/genética , Depuração Mucociliar/genética , Mucosa Respiratória/metabolismo , Proteína Tumoral p73/genética , Diferenciação Celular/genética , Células Cultivadas , Ciliopatias/genética , Genes Recessivos , Homozigoto , Humanos , Mutação com Perda de Função , Microscopia de Vídeo , Mucosa Respiratória/citologia , Mucosa Respiratória/ultraestrutura , Sequenciamento do Exoma
6.
BMC Cancer ; 24(1): 587, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38741073

RESUMO

YAP and TAZ, the Hippo pathway terminal transcriptional activators, are frequently upregulated in cancers. In tumor cells, they have been mainly associated with increased tumorigenesis controlling different aspects from cell cycle regulation, stemness, or resistance to chemotherapies. In fewer cases, they have also been shown to oppose cancer progression, including by promoting cell death through the action of the p73/YAP transcriptional complex, in particular after chemotherapeutic drug exposure. Using HCT116 cells, we show here that oxaliplatin treatment led to core Hippo pathway down-regulation and nuclear accumulation of TAZ. We further show that TAZ was required for the increased sensitivity of HCT116 cells to oxaliplatin, an effect that appeared independent of p73, but which required the nuclear relocalization of TAZ. Accordingly, Verteporfin and CA3, two drugs affecting the activity of YAP and TAZ, showed antagonistic effects with oxaliplatin in co-treatments. Importantly, using several colorectal cell lines, we show that the sensitizing action of TAZ to oxaliplatin is dependent on the p53 status of the cells. Our results support thus an early action of TAZ to sensitize cells to oxaliplatin, consistent with a model in which nuclear TAZ in the context of DNA damage and p53 activity pushes cells towards apoptosis.


Assuntos
Antineoplásicos , Neoplasias do Colo , Via de Sinalização Hippo , Oxaliplatina , Proteínas Serina-Treonina Quinases , Transdução de Sinais , Transativadores , Fatores de Transcrição , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional , Proteína Supressora de Tumor p53 , Humanos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Neoplasias do Colo/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HCT116 , Via de Sinalização Hippo/efeitos dos fármacos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Compostos Organoplatínicos/farmacologia , Compostos Organoplatínicos/uso terapêutico , Oxaliplatina/farmacologia , Porfirinas/farmacologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Transdução de Sinais/efeitos dos fármacos , Transativadores/metabolismo , Transativadores/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Proteína Tumoral p73/metabolismo , Proteína Tumoral p73/genética , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , Proteínas Supressoras de Tumor/metabolismo , Proteínas Supressoras de Tumor/genética , Verteporfina/farmacologia , Verteporfina/uso terapêutico , Proteínas de Sinalização YAP/metabolismo
7.
Mol Biol Rep ; 51(1): 886, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39105958

RESUMO

Cancer is considered the uncontrolled growth and spread of cells into neighboring tissues, a process governed at the molecular level by many different factors, including abnormalities in the protein family's death-associated kinase (DAPK). DAPK2 is a member of the DAPK protein family, which plays essential roles in several cellular processes. DAPK2 acts as a tumor suppressor, interacting with several proteins, such as TNF, IFN, etc. during apoptosis and autophagy. Expression of DAPK2 causes changes in the structure of the cell, ultimately leading to cell death by apoptosis. In this essay, studies are obtained from Scopus, PubMed, and the Web of Science. According to these investigations, DAPK2 activates autophagy by interacting with AMPK, mTORC1, and p73. Furthermore, DAPK2 induces apoptosis pathway via interacting with the p73 family and JNK. In general, due to the vital role of DAPK2 in cell physiology and its effect on various factors and signaling pathways, it can be a potent target in the treatment of various cancers, including gastric, ovarian, breast, and other prominent cancers.


Assuntos
Apoptose , Autofagia , Proteínas Quinases Associadas com Morte Celular , Neoplasias , Transdução de Sinais , Humanos , Proteínas Quinases Associadas com Morte Celular/metabolismo , Proteínas Quinases Associadas com Morte Celular/genética , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Apoptose/genética , Autofagia/genética , Proteína Tumoral p73/metabolismo , Proteína Tumoral p73/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Regulação Neoplásica da Expressão Gênica
8.
Proc Natl Acad Sci U S A ; 118(44)2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34716260

RESUMO

The p53 tumor suppressor protein, known to be critically important in several processes including cell-cycle arrest and apoptosis, is highly regulated by multiple mechanisms, most certifiably the Murine Double Minute 2-Murine Double Minute X (MDM2-MDMX) heterodimer. The role of MDM2-MDMX in cell-cycle regulation through inhibition of p53 has been well established. Here we report that in cells either lacking p53 or expressing certain tumor-derived mutant forms of p53, loss of endogenous MDM2 or MDMX, or inhibition of E3 ligase activity of the heterocomplex, causes cell-cycle arrest. This arrest is correlated with a reduction in E2F1, E2F3, and p73 levels. Remarkably, direct ablation of endogenous p73 produces a similar effect on the cell cycle and the expression of certain E2F family members at both protein and messenger RNA levels. These data suggest that MDM2 and MDMX, working at least in part as a heterocomplex, may play a p53-independent role in maintaining cell-cycle progression by promoting the activity of E2F family members as well as p73, making them a potential target of interest in cancers lacking wild-type p53.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteína Tumoral p73/metabolismo , Animais , Apoptose , Ciclo Celular/fisiologia , Pontos de Checagem do Ciclo Celular/genética , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/metabolismo , Fator de Transcrição E2F1/metabolismo , Humanos , Proteínas Nucleares/metabolismo , Ligação Proteica , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas c-mdm2/genética , Proteína Tumoral p73/genética , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
9.
PLoS Genet ; 17(5): e1009553, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33945523

RESUMO

The CBFB gene is frequently mutated in several types of solid tumors. Emerging evidence suggests that CBFB is a tumor suppressor in breast cancer. However, our understanding of the tumor suppressive function of CBFB remains incomplete. Here, we analyze genetic interactions between mutations of CBFB and other highly mutated genes in human breast cancer datasets and find that CBFB and TP53 mutations are mutually exclusive, suggesting a functional association between CBFB and p53. Integrated genomic studies reveal that TAp73 is a common transcriptional target of CBFB and p53. CBFB cooperates with p53 to maintain TAp73 expression, as either CBFB or p53 loss leads to TAp73 depletion. TAp73 re-expression abrogates the tumorigenic effect of CBFB deletion. Although TAp73 loss alone is insufficient for tumorigenesis, it enhances the tumorigenic effect of NOTCH3 overexpression, a downstream event of CBFB loss. Immunohistochemistry shows that p73 loss is coupled with higher proliferation in xenografts. Moreover, TAp73 loss-of-expression is a frequent event in human breast cancer tumors and cell lines. Together, our results significantly advance our understanding of the tumor suppressive functions of CBFB and reveal a mechanism underlying the communication between the two tumor suppressors CBFB and p53.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Subunidade beta de Fator de Ligação ao Core/genética , Regulação Neoplásica da Expressão Gênica , Proteína Tumoral p73/genética , Proteína Supressora de Tumor p53/genética , Animais , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Transformação Celular Neoplásica/genética , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Subunidade beta de Fator de Ligação ao Core/deficiência , Subunidade beta de Fator de Ligação ao Core/metabolismo , Feminino , Genes Supressores de Tumor , Humanos , Imuno-Histoquímica , Camundongos , Mutação , Receptor Notch3/genética , Receptor Notch3/metabolismo , Transcrição Gênica , Proteína Tumoral p73/deficiência , Proteína Tumoral p73/metabolismo , Proteína Supressora de Tumor p53/deficiência , Proteína Supressora de Tumor p53/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Semin Cell Dev Biol ; 110: 51-60, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32362381

RESUMO

Multiciliated cells (MCC) project dozens to hundreds of motile cilia from the cell surface to generate fluid flow across epithelial surfaces or turbulence to promote the transport of gametes. The MCC differentiation program is initiated by GEMC1 and MCIDAS, members of the geminin family, that activate key transcription factors, including p73 and FOXJ1, to control the multiciliogenesis program. To support the generation of multiple motile cilia, MCCs must undergo massive centriole amplification to generate a sufficient number of basal bodies (modified centrioles). This transcriptional program involves the generation of deuterosomes, unique structures that act as platforms to regulate centriole amplification, the reactivation of cell cycle programs to control centriole amplification and release, and extensive remodeling of the cytoskeleton. This review will focus on providing an overview of the transcriptional regulation of MCCs and its connection to key processes, in addition to highlighting exciting recent developments and open questions in the field.


Assuntos
Proteínas de Ciclo Celular/genética , Centríolos/metabolismo , Cílios/metabolismo , Ciliopatias/genética , Fatores de Transcrição/genética , Transcrição Gênica , Animais , Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Diferenciação Celular , Centríolos/ultraestrutura , Cílios/ultraestrutura , Ciliopatias/metabolismo , Ciliopatias/patologia , Citoesqueleto/metabolismo , Citoesqueleto/ultraestrutura , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Regulação da Expressão Gênica , Humanos , Transdução de Sinais , Fatores de Transcrição/metabolismo , Proteína Tumoral p73/genética , Proteína Tumoral p73/metabolismo
11.
Cancer Metastasis Rev ; 41(4): 853-869, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35948758

RESUMO

Cancer largely adheres to Darwinian selection. Evolutionary forces are prominent during metastasis, the final and incurable disease stage, where cells acquire combinations of advantageous phenotypic features and interact with a dynamically changing microenvironment, in order to overcome the metastatic bottlenecks, while therapy exerts additional selective pressures. As a strategy to increase their fitness, tumors often co-opt developmental and tissue-homeostasis programs. Herein, 25 years after its discovery, we review TP73, a sibling of the cardinal tumor-suppressor TP53, through the lens of cancer evolution. The TP73 gene regulates a wide range of processes in embryonic development, tissue homeostasis and cancer via an overwhelming number of functionally divergent isoforms. We suggest that TP73 neither merely mimics TP53 via its p53-like tumor-suppressive functions, nor has black-or-white-type effects, as inferred by the antagonism between several of its isoforms in processes like apoptosis and DNA damage response. Rather, under dynamic conditions of selective pressure, the various p73 isoforms which are often co-expressed within the same cancer cells may work towards a common goal by simultaneously activating isoform-specific transcriptional and non-transcriptional programs. Combinatorial co-option of these programs offers selective advantages that overall increase the likelihood for successfully surpassing the barriers of the metastatic cascade. The p73 functional pleiotropy-based capabilities might be present in subclonal populations and expressed dynamically under changing microenvironmental conditions, thereby supporting clonal expansion and propelling evolution of metastasis. Deciphering the critical p73 isoform patterns along the spatiotemporal axes of tumor evolution could identify strategies to target TP73 for prevention and therapy of cancer metastasis.


Assuntos
Neoplasias , Proteínas Supressoras de Tumor , Humanos , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteína Tumoral p73/genética , Proteína Supressora de Tumor p53/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Genes Supressores de Tumor , Neoplasias/genética , Neoplasias/patologia , Microambiente Tumoral
12.
Proc Natl Acad Sci U S A ; 117(27): 15694-15701, 2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32571922

RESUMO

The p53 family member p73 has a complex gene structure, including alternative promoters and alternative splicing of the 3' UTR. This results in a complex range of isoforms whose biological relevance largely remains to be determined. By deleting exon 13 (which encodes a sterile α motif) from the Trp73 gene, we selectively engineered mice to replace the most abundantly expressed C-terminal isoform, p73α, with a shorter product of alternative splicing, p73ß. These mice (Trp73Δ13/Δ13 ) display severe neurodevelopmental defects with significant functional and morphological abnormalities. Replacement of p73α with p73ß results in the depletion of Cajal-Retzius (CR) cells in embryonic stages, thus depriving the developing hippocampus of the pool of neurons necessary for correct hippocampal architecture. Consequently, Trp73Δ13/Δ13 mice display severe hippocampal dysgenesis, reduced synaptic functionality and impaired learning and memory capabilities. Our data shed light on the relevance of p73 alternative splicing and show that the full-length C terminus of p73 is essential for hippocampal development.


Assuntos
Processamento Alternativo/genética , Desenvolvimento Embrionário/genética , Hipocampo/crescimento & desenvolvimento , Proteína Tumoral p73/genética , Animais , Apoptose/genética , Hipocampo/metabolismo , Humanos , Células Intersticiais de Cajal/metabolismo , Aprendizagem/fisiologia , Memória/fisiologia , Camundongos , Neurônios/metabolismo , Regiões Promotoras Genéticas
13.
Mol Carcinog ; 61(7): 629-642, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35560453

RESUMO

Members of the p53 family of transcription factors-p53, p63, and p73-share a high degree of homology; however, members can be activated in response to different stimuli, perform distinct (sometimes opposing) roles and are expressed in different tissues. The level of complexity is increased further by the transcription of multiple isoforms of each homolog, which may interact or interfere with each other and can impact cellular outcome. Proteins perform their functions through interacting with other proteins (and/or with nucleic acids). Therefore, identification of the interactors of a protein and how they interact in 3D is essential to fully comprehend their roles. By utilizing an in silico protein-protein interaction prediction method-HMI-PRED-we predicted interaction partners of p53 family members and modeled 3D structures of these protein interaction complexes. This method recovered experimentally known interactions while identifying many novel candidate partners. We analyzed the similarities and differences observed among the interaction partners to elucidate distinct functions of p53 family members and provide examples of how this information may yield mechanistic insight to explain their overlapping versus distinct/opposing outcomes in certain contexts. While some interaction partners are common to p53, p63, and p73, the majority are unique to each member. Nevertheless, most of the enriched pathways associated with these partners are common to all members, indicating that the members target the same biological pathways but through unique mediators. p63 and p73 have more common enriched pathways compared to p53, supporting their similar developmental roles in different tissues.


Assuntos
Fatores de Transcrição , Proteína Supressora de Tumor p53 , Proteínas de Ligação a DNA/metabolismo , Humanos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Proteína Tumoral p73/genética , Proteína Tumoral p73/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
14.
BMC Cancer ; 22(1): 581, 2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35614413

RESUMO

BACKGROUND: Long non-coding RNA P73 antisense RNA 1 T (non-protein coding), also known as Lnc RNA TP73-AS1, is dysregulated in various tumors but the correlation between its expression and clinicopathological parameters and/or prognoses in cancer patients is inconclusive. Here, we performed a meta-analysis to evaluate the prognostic value of Lnc RNA TP73-AS1 for malignancies. METHODS: We systematically searched four online databases including PubMed, the Web of Science, Embase, and the Cochrane Library for eligible articles published up to June 29/2020. Odds ratios (ORs) and Pooled hazard ratios (HRs) with 95% confidence intervals (95% CIs) were used to assess the association of TP73-AS1 expression with prognostic and clinicopathological parameters. We further validated TP73-AS1 expression in various malignancies and its potential prognostic value using the GEPIA online database. We predicted potential biological processes and relevant signal mechanisms through the public databases. RESULTS: A total of 26 studies examining 14 cancers were analyzed to evaluate the relationship between TP73-AS1 expression, clinicopathological features and prognostic indicators. The results indicated that TP73-AS1 expression markedly correlates with TNM stage (OR = 3.27,95% CI:2.43-4.39, P < 0.00001), tumor size (OR = 3.00, 95%CI:2.08-4.35, P < 0.00001), lymph node metastasis (OR = 2.77, 95%CI:1.42-5.38,P < 0.00001) and distant metastasis (OR = 4.50,95%CI:2. 62-7.73,P < 0.00001). No correlation with age (OR = 1.12,95%CI:0.77-1.64, P > 0.05), gender (OR = 1.08, 95%CI:0.84-1.38, P > 0.05) or differentiation (OR = 1.39, 95%CI:0.71-2.70, P = 0.340) was observed. TP73-AS1 overexpression was a biomarker of poor Overall survival(OS)(HR = 1.85,95%CI:1.53-2.22, P < 0.00001) and Disease-Free-Survival (DFS) (HR = 1.57,95%CI:1.03-2.42, P < 0.05). Dysregulated TP73-AS1 expression and its prognostic value in various cancers was validated based on The Cancer Genome Atlas (TCGA). Further biological function predictions indicated that TP73-AS1 was involved in pro-oncogenic signaling. CONCLUSIONS: The upregulation of Lnc RNA TP73-AS1 was related to detrimental clinicopathological parameters and can be considered an indicator of poor prognosis for cancer malignancies.


Assuntos
Neoplasias , RNA Longo não Codificante , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Biologia Computacional , Humanos , Metástase Linfática , Neoplasias/patologia , Prognóstico , RNA Longo não Codificante/metabolismo , Proteína Tumoral p73/genética
15.
Gynecol Endocrinol ; 38(3): 243-247, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34494506

RESUMO

AIMS: This study aims to investigate whether HRG gene C633T rs9898 and TP73 gene rs4648551 A > G polymorphisms have an effect on ovulation and response to the gonadotropin treatments. MATERIALS AND METHODS: Blood samples were received from a total of 206 individuals (116 patients from whom good quality and optimal of numbers oocytes have not been able to be obtained at the IVF Center of Ondokuz Mayis University, Faculty of Medicine and 90 controls). Genomic DNA was extracted by DNA isolation and SNP genotyping was performed by real-time qPCR method. RESULTS: According to the results, a significant difference was observed between the patient and control groups in terms of the TP73 gene variant, however there was no significant difference regarding HRG gene polymorphism. CONCLUSIONS: Our findings suggest that while AG genotype for TP73 could be a genetic marker for ovarian response, HRG gene C633T variation is not associated with ovarian response in our cohort. Further studies with larger study groups are required to investigate possible associations of these gene variants with ovarian response.


Assuntos
Ovário , Polimorfismo de Nucleotídeo Único , Proteínas , Proteína Tumoral p73 , Estudos de Coortes , Feminino , Fertilização in vitro , Genótipo , Humanos , Oócitos , Indução da Ovulação , Proteínas/genética , Proteína Tumoral p73/genética
16.
Proc Natl Acad Sci U S A ; 116(48): 24259-24267, 2019 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-31712410

RESUMO

p53 is the most frequently mutated gene in human cancers and mutant p53 has a gain of function (GOF) that promotes tumor progression and therapeutic resistance. One of the major GOF activities of mutant p53 is to suppress 2 other p53 family proteins, p63 and p73. However, the molecular basis is not fully understood. Here, we examined whether mutant p53 antagonizes p63/p73-mediated tumor suppression in vivo by using mutant p53-R270H knockin and TAp63/p73-deficient mouse models. We found that knockin mutant p53-R270H shortened the life span of p73+/- mice and subjected TAp63+/- or p73+/- mice to T lymphoblastic lymphomas (TLBLs). To unravel the underlying mechanism, we showed that mutant p53 formed a complex with Notch1 intracellular domain (NICD) and antagonized p63/p73-mediated repression of HES1 and ECM1. As a result, HES1 and ECM1 were overexpressed in TAp63+/- ;p53R270H/- and p73+/- ;p53R270H/- TLBLs, suggesting that normal function of HES1 and ECM1 in T cell activation is hyperactivated, leading to lymphomagenesis. Together, our data reveal a previously unappreciated mechanism by which GOF mutant p53 hijacks the p63/p73-regulated transcriptional program via the Notch1 pathway.


Assuntos
Receptor Notch1/metabolismo , Transativadores/metabolismo , Proteína Tumoral p73/genética , Proteína Supressora de Tumor p53/genética , Animais , Linhagem Celular Tumoral , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos Mutantes , Mutação , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/mortalidade , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patologia , Regiões Promotoras Genéticas , Receptor Notch1/genética , Transativadores/genética , Fatores de Transcrição HES-1/genética , Fatores de Transcrição HES-1/metabolismo , Proteína Tumoral p73/metabolismo , Proteína Supressora de Tumor p53/metabolismo
17.
Carcinogenesis ; 42(4): 650-662, 2021 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-33569599

RESUMO

Pirh2 is an E3 ligase belonging to the RING-H2 family and shown to bind, ubiquitinate and downregulate p73 tumor suppressor function without altering p73 protein levels. AIP4, an E3 ligase belonging to the HECT domain family, has been reported to be a negative regulatory protein that promotes p73 ubiquitination and degradation. Herein, we found that Pirh2 is a key regulator of AIP4 that inhibits p73 function. Pirh2 physically interacts with AIP4 and significantly downregulates AIP4 expression. This downregulation is shown to involve the ubiquitination of AIP4 by Pirh2. Importantly, we demonstrated that the ectopic expression of Pirh2 inhibits the AIP4-p73 negative regulatory pathway, which was restored when depleting endogenous Pirh2 utilizing Pirh2-siRNAs. We further observed that Pirh2 decreases AIP4-mediated p73 ubiquitination. At the translational level and specifically regarding p73 cell cycle arrest function, Pirh2 still ensures the arrest of p73-mediated G1 despite AIP4 expression. Our study reveals a novel link between two E3 ligases previously thought to be unrelated in regulating the same effector substrate, p73. These findings open a gateway to explain how E3 ligases differentiate between regulating multiple substrates that may belong to the same family of proteins, as it is the case for the p53 and p73 proteins.


Assuntos
Proteínas Repressoras/genética , Proteína Tumoral p73/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitinação/genética , Pontos de Checagem do Ciclo Celular/genética , Linhagem Celular Tumoral , Regulação da Expressão Gênica/genética , Humanos , Ligação Proteica/genética
18.
J Cell Sci ; 132(19)2019 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-31582429

RESUMO

p73 (TP73) belongs to the p53 family of transcription factors. Its gene locus encodes two opposing types of isoforms, the transcriptionally active TAp73 class and the dominant-negative DNp73 class, which both play critical roles in development and homeostasis in an astonishingly diverse array of biological systems within specific tissues. While p73 has functions in cancer, this Review focuses on the non-oncogenic activities of p73. In the central and peripheral nervous system, both isoforms cooperate in complex ways to regulate neural stem cell survival, self-renewal and terminal differentiation. In airways, oviduct and to a lesser extent in brain ependyma, TAp73 is the master transcriptional regulator of multiciliogenesis, enabling fluid and germ cell transport across tissue surfaces. In male and female reproduction, TAp73 regulates gene networks that control cell-cell adhesion programs within germinal epithelium to enable germ cell maturation. Finally, p73 participates in the control of angiogenesis in development and cancer. While many open questions remain, we discuss here key findings that provide insight into the complex functions of this gene at the organismal, cellular and molecular level.


Assuntos
Proteína Tumoral p73/metabolismo , Animais , Adesão Celular/genética , Adesão Celular/fisiologia , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Feminino , Regulação da Expressão Gênica/genética , Regulação da Expressão Gênica/fisiologia , Humanos , Masculino , Neovascularização Fisiológica/genética , Neovascularização Fisiológica/fisiologia , Proteína Tumoral p73/genética , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
19.
J Cell Sci ; 132(11)2019 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-31028178

RESUMO

A distinct combination of transcription factors elicits the acquisition of a specific fate and the initiation of a differentiation program. Multiciliated cells (MCCs) are a specialized type of epithelial cells that possess dozens of motile cilia on their apical surface. Defects in cilia function have been associated with ciliopathies that affect many organs, including brain and airway epithelium. Here we show that the geminin coiled-coil domain-containing protein 1 GemC1 (also known as Lynkeas) regulates the transcriptional activation of p73, a transcription factor central to multiciliogenesis. Moreover, we show that GemC1 acts in a trimeric complex with transcription factor E2F5 and tumor protein p73 (officially known as TP73), and that this complex is important for the activation of the p73 promoter. We also provide in vivo evidence that GemC1 is necessary for p73 expression in different multiciliated epithelia. We further show that GemC1 regulates multiciliogenesis through the control of chromatin organization, and the epigenetic marks/tags of p73 and Foxj1. Our results highlight novel signaling cues involved in the commitment program of MCCs across species and tissues.This article has an associated First Person interview with the first author of the paper.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Cílios/metabolismo , Células Epiteliais/metabolismo , Regulação da Expressão Gênica/genética , Proteína Tumoral p73/metabolismo , Animais , Proteínas de Ciclo Celular/genética , Diferenciação Celular , Linhagem Celular , Cromatina/metabolismo , Células Epiteliais/citologia , Fatores de Transcrição Forkhead/metabolismo , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Nucleares/metabolismo , Regiões Promotoras Genéticas/genética , Transdução de Sinais , Ativação Transcricional/genética , Proteína Tumoral p73/genética
20.
J Pathol ; 251(3): 284-296, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32304229

RESUMO

Ferredoxin reductase (FDXR) is a mitochondrial flavoprotein that initiates electron transport from NADPH to several cytochromes P450 via two electron carriers, ferredoxin 1 (FDX1) and FDX2. FDXR is the sole ferredoxin reductase in humans and plays a critical role in steroidogenesis and biosynthesis of heme and iron-sulfur clusters. However, much less is known about the role of FDXR in cancer. Here, we show that FDXR plays a role in tumorigenesis by modulating expression of the tumor suppressor p73. By using genetically modified mouse models, we recently showed that mice deficient in either Fdxr or Trp73 had a shorter lifespan and were prone to spontaneous tumors as compared with wild-type (WT) mice. Interestingly, compound Trp73 +/- ;Fdxr +/- mice lived longer and developed fewer tumors when compared with Fdxr +/- or Trp73 +/- mice. Moreover, we found that cellular senescence was increased in Trp73 +/- and Fdxr +/- mouse embryonic fibroblasts (MEFs), which was further increased in Trp73 +/- ;Fdxr +/- MEFs, as compared with that in WT MEFs. As FDXR is regulated by p73, we examined whether there was a feedback regulation between p73 and FDXR. Indeed, we found that Trp73 expression was decreased by loss of Fdxr in MEFs and that FDXR is required for p73 expression in multiple human cancer cell lines independent of p53. Mechanistically, we found that loss of FDXR, via FDX2, increased expression of iron-binding protein 2 (IRP2), which subsequently repressed TP73 mRNA stability. We also showed that TP73 transcript contained an iron response element in its 3'UTR, which was required for IRP2 to destabilize TP73 mRNA. Together, these data reveal a novel regulation of p73 by FDXR via IRP2 and that the FDXR-p73 axis plays a critical role in aging and tumor suppression. © 2020 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Assuntos
Proliferação de Células , Senescência Celular , Ferredoxina-NADP Redutase/metabolismo , Proteína 2 Reguladora do Ferro/metabolismo , Neoplasias/enzimologia , Proteína Tumoral p73/metabolismo , Animais , Ferredoxina-NADP Redutase/deficiência , Ferredoxina-NADP Redutase/genética , Regulação Neoplásica da Expressão Gênica , Células HCT116 , Humanos , Ferro/metabolismo , Proteína 2 Reguladora do Ferro/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neoplasias/genética , Neoplasias/patologia , Estabilidade de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Neoplásico/genética , RNA Neoplásico/metabolismo , Transdução de Sinais , Carga Tumoral , Proteína Tumoral p73/deficiência , Proteína Tumoral p73/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa