RESUMO
Combination chemotherapy, which involves the simultaneous use of multiple anticancer drugs in adequate combinations to disrupt multiple mechanisms associated with tumor growth, has shown advantages in enhanced therapeutic efficacy and lower systemic toxicity relative to monotherapy. Herein, we employed coordination-driven self-assembly to construct discrete Pt(II) metallacycles as monodisperse, modular platforms for combining camptothecin and combretastatin A4, two chemotherapy agents with a disparate mechanism of action, in precise arrangements for combination chemotherapy. Formulation of the drug-loaded metallacycles with folic acidfunctionalized amphiphilic diblock copolymers furnished nanoparticles with good solubility and stability in physiological conditions. Folic acids on the surface of the nanoparticles promote their internalization into cancer cells. The intracellular reductive environment of cancer cells induces the release of the drug molecules at an exact 1:1 ratio, leading to a synergistic anticancer efficacy. In vivo studies on tumor-bearing mice demonstrated the favorable therapeutic outcome and minimal side effects of the combination chemotherapy approach based on a self-assembled metallacycle.
Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica , Camptotecina , Neoplasias , Platina , Estilbenos , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica/química , Camptotecina/administração & dosagem , Camptotecina/farmacologia , Liberação Controlada de Fármacos , Sinergismo Farmacológico , Ácido Fólico/química , Humanos , Camundongos , Nanopartículas , Neoplasias/tratamento farmacológico , Platina/química , Polímeros/uso terapêutico , Estilbenos/administração & dosagem , Estilbenos/farmacologia , Microambiente TumoralRESUMO
Roburic acid (ROB) is a naturally occurred tetracyclic triterpenoid, and the anticancer activity of this compound has not been reported. Docetaxel (DOC) is the first-line chemotherapeutic agent for advanced stage prostate cancer but toxic side effects and drug resistance limit its clinical success. In this study, the potential synergistic anticancer effect and the underlying mechanisms of ROB in combination with DOC on prostate cancer were investigated. The results showed that ROB and DOC in combination synergistically inhibited the growth of prostate cancer cells. The combination also strongly induced apoptosis, and suppressed cell migration, invasion and sphere formation. Mechanistic study showed that the combined effects of ROB and DOC on prostate cancer cells were associated with inhibition of NF-κB activation, down regulation of Bcl-2 and up regulation of Bax. Knockdown of NF-κB by small interfering RNA (siRNA) significantly decreased the combined effect of ROB and DOC. Moreover, we found that esomeprazole (ESOM), a proton pump inhibitor (PPI), strongly enhanced the effectiveness of ROB and DOC on prostate cancer cells in acidic culture medium. Since acidic micro environment is known to impair the efficacy of current anticancer therapies, ESOM combined with ROB and DOC may be an effective approach for improving the treatment of prostate cancer patients.
Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica , Docetaxel , Neoplasias da Próstata , Humanos , Masculino , Protocolos de Quimioterapia Combinada Antineoplásica/síntese química , Protocolos de Quimioterapia Combinada Antineoplásica/química , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Docetaxel/química , Docetaxel/farmacologia , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Esomeprazol/química , Esomeprazol/farmacologia , Estrutura Molecular , NF-kappa B/antagonistas & inibidores , NF-kappa B/metabolismo , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Relação Estrutura-Atividade , Células Tumorais CultivadasRESUMO
The human gonadotropin releasing hormone (GnRH-I) and its sea lamprey analogue GnRH-III specifically bind to GnRH receptors on cancer cells and can be used as targeting moieties for targeted tumor therapy. Considering that the selective release of drugs in cancer cells is of high relevance, we were encouraged to develop cleavable, self-immolative GnRH-III-drug conjugates which consist of a p-aminobenzyloxycarbonlyl (PABC) spacer between a cathepsin B-cleavable dipeptide (Val-Ala, Val-Cit) and the classical anticancer drugs daunorubicin (Dau) and paclitaxel (PTX). Alongside these compounds, non-cleavable GnRH-III-drug conjugates were also synthesized, and all compounds were analyzed for their antiproliferative activity. The cleavable GnRH-III bioconjugates revealed a growth inhibitory effect on GnRH receptor-expressing A2780 ovarian cancer cells, while their activity was reduced on Panc-1 pancreatic cancer cells exhibiting a lower GnRH receptor level. Moreover, the antiproliferative activity of the non-cleavable counterparts was strongly reduced. Additionally, the efficient cleavage of the Val-Ala linker and the subsequent release of the drugs could be verified by lysosomal degradation studies, while radioligand binding studies ensured that the GnRH-III-drug conjugates bound to the GnRH receptor with high affinity. Our results underline the high value of GnRH-III-based homing devices and the application of cathepsin B-cleavable linker systems for the development of small molecule drug conjugates (SMDCs).
Assuntos
Hormônio Liberador de Gonadotropina , Terapia de Alvo Molecular , Neoplasias Ovarianas , Receptores LHRH , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/química , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Catepsina B/química , Catepsina B/uso terapêutico , Linhagem Celular Tumoral , Daunorrubicina/química , Daunorrubicina/uso terapêutico , Feminino , Hormônio Liberador de Gonadotropina/uso terapêutico , Humanos , Terapia de Alvo Molecular/métodos , Paclitaxel/química , Paclitaxel/uso terapêutico , Petromyzon , Ácido Pirrolidonocarboxílico/análogos & derivados , Ácido Pirrolidonocarboxílico/uso terapêutico , Receptores LHRH/uso terapêuticoRESUMO
Chlorin e6 (Ce6) is a promising photosensitizer for tumor photodynamic therapy (PDT). However, the efficacy of Ce6 PDT is limited by Ce6's poor water solubility, rapid blood clearance, and inadequate accumulation in the tumor tissue. This problem is tackled in this work, wherein functionalized superparamagnetic iron oxide nanoparticles (IO-NPs) were used as carriers to deliver Ce6 to melanoma. The IO-NPs were coated with polyglycerol (PG) to afford good aqueous solubility. The chemotherapeutic agent doxorubicin (DOX) was attached to the PG coating via the hydrazone bond to afford affinity to the cell membrane and thereby promote the cell uptake. The hydrophobic nature of DOX also induced the aggregation of IO-NPs to form nanoclusters. Ce6 was then loaded onto the IO nanoclusters through physical adsorption and coordination with surface iron atoms, yielding the final composites IO-PG-DOX-Ce6. In vitro experiments showed that IO-PG-DOX-Ce6 markedly increased Ce6 uptake in mouse melanoma cells, leading to much-enhanced photocytotoxicity characterized by intensified reactive oxygen species production, loss of viability, DNA damage, and stimulation of tumor cell immunogenicity. In vivo experiments corroborated the in vitro findings and demonstrated prolonged blood clearance of IO-PG-DOX-Ce6. Importantly, IO-PG-DOX-Ce6 markedly increased the Ce6 distribution and retention in mouse subcutaneous melanoma grafts and significantly improved the efficacy of Ce6-mediated PDT. No apparent vital organ damage was observed at the same time. In conclusion, the IO-PG-DOX NPs provide a simple and safe delivery platform for efficient tumor enrichment of Ce6, thereby enhancing antimelanoma PDT.
Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Clorofilídeos/administração & dosagem , Melanoma/tratamento farmacológico , Sistemas de Liberação de Fármacos por Nanopartículas/química , Neoplasias Cutâneas/tratamento farmacológico , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/química , Protocolos de Quimioterapia Combinada Antineoplásica/farmacocinética , Linhagem Celular Tumoral , Clorofilídeos/química , Clorofilídeos/farmacocinética , Modelos Animais de Doenças , Doxorrubicina/administração & dosagem , Feminino , Humanos , Nanopartículas Magnéticas de Óxido de Ferro/química , Melanoma/patologia , Camundongos , Fotoquimioterapia , Neoplasias Cutâneas/patologia , Solubilidade , Distribuição TecidualRESUMO
Pancreatic cancer is a lethal malignancy with a dismal prognosis. Gemcitabine is currently used to treat pancreatic cancer, but it is limited by significant toxicity. Clinical trials on the combination of gemcitabine and erlotinib reported unsatisfactory outcomes along with concerns of toxicity. The encapsulation of chemotherapy drugs in polylactic-co-glycolic acid (PLGA) nanoparticles (NPs) can alleviate toxicity through targeted delivery and sustained release. In addition, camouflaging the NPs with a macrophage membrane can evade the immune system and further improve tumor homing. We designed gemcitabine-loaded PLGA NPs with a macrophage membrane coating (MPGNPs) to reduce drug toxicity and increase the accumulation in the tumor. The combination of MPGNPs and erlotinib synergistically inhibited pancreatic cancer cell proliferation in vitro and in vivo by targeting the PI3K/AKT/mTOR and Ras/Raf/MEK/ERK signaling pathways. The MPGNPs were also able to evade phagocytosis and achieve passive targeting to the pancreatic tumors. The combination of MPGNPs and erlotinib showed synergistic anti-tumor efficacy in vitro and in vivo. This study provides a proof-of-concept for treating pancreatic cancer with a combination of MPGNPs and erlotinib.
Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Macrófagos/química , Nanopartículas/administração & dosagem , Neoplasias Pancreáticas/tratamento farmacológico , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/química , Protocolos de Quimioterapia Combinada Antineoplásica/farmacocinética , Apoptose , Proliferação de Células , Desoxicitidina/administração & dosagem , Desoxicitidina/análogos & derivados , Cloridrato de Erlotinib/administração & dosagem , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Nanopartículas/química , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Poliésteres , Distribuição Tecidual , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto , GencitabinaRESUMO
PURPOSE: To develop immunoliposomes modified with monoclonal cancer-specific antibody (mAb) 2C5 and co-loaded with a combination of two chemotherapeutics, in order to simultaneously target bulk cancer cells using paclitaxel and cancer stem cells (CSCs) using salinomycin to prevent cancer growth and metastases. METHODS: Breast cancer cells (MDA-MB-231 and/or SK-BR-3) were chosen as models for all in vitro testing. Liposomes composed of natural phospholipids co-loaded with salinomycin and paclitaxel were prepared and physically characterized. Immunoliposomes modified with mAb 2C5 coupled to polymeric conjugate were prepared and characterized for specific targeting. Wound healing assay was performed using the combination of free drugs in vitro. In vitro studies on cellular interaction and uptake were followed by holographic imaging to study cell-killing, cell-division and proliferation inhibiting effects of the formulation. Ex-vivo study on hemolysis was investigated to check possible toxicity of the formulation. RESULTS: Physical characterization of the liposomes showed stable nanoparticles of consistent and desirable size range (170-220 nm), zeta potential (-13 mV to - 20 mV), polydispersity indices (<0.2) and drug encapsulation efficiencies (~150 µg per ml for salinomycin, ~210 µg/ml for paclitaxel and 1:1 for combination drug loaded liposomes). Combination therapy strongly affected cancer cell proliferation as shown by significant diminishing of artificial gap closure at the wound site on MDA-MB-231 cells in culture using wound healing assay. Quantitation of changes in wound widths showed ~219 µm for drug combination, ~104 µm for only paclitaxel, and ~ 7 µm for only salinomycin treatments. Statistically significant increase in cellular interaction and specific uptake of the targeted drug co-loaded liposomal nanopreparation (p value ≤ 0.05) by MDA-MB-231 and SK-BR-3 cells confirmed the effectiveness of the approach. Holographic imaging using MDA-MB-231 cells produced visible increase in cell-killing, proliferation and division in vitro. Ex-vivo experimentation showed reduced hemolysis correlating with low toxicity in athymic nude mice model. CONCLUSION: The results demonstrated the enhanced therapeutic efficacy of a combination of salinomycin and paclitaxel delivered by mAb 2C5-modified liposomal preparation in cancer therapy.
Assuntos
Anticorpos Monoclonais/química , Protocolos de Quimioterapia Combinada Antineoplásica/química , Portadores de Fármacos/química , Lipossomos/química , Paclitaxel/química , Piranos/química , Animais , Anticorpos Monoclonais/imunologia , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Permeabilidade da Membrana Celular , Proliferação de Células/efeitos dos fármacos , Preparações de Ação Retardada/química , Composição de Medicamentos , Liberação Controlada de Fármacos , Feminino , Humanos , Lipossomos/imunologia , Camundongos Nus , Neoplasias Experimentais , Paclitaxel/farmacologia , Fosfatidilcolinas/química , Polietilenoglicóis/química , Piranos/farmacologiaRESUMO
The acquired drug resistance of the platinum-based drug is a main obstacle in cancer therapy. Herein, an aminopyrrolic receptor 1 was synthesized to sensitize satraplatin for overcoming the drug resistance as well as improving tumor targeted ability. Thus, Pluronic F127-based polyaniline nanoparticles were designed to co-deliver satraplatin and aminopyrrolic receptor 1, which could control the drug release with the Near Infrared laser irradiation (808 nm) due to the polyaniline mediated photothermal conversion. Biological evaluation shows prepared nanoparticles (Pt-ARNPs) exhibited more effective cytotoxicity (IC50 = 2.7µM) against the tested cancer cell lines under laser irradiation, compared with free satraplatin or treatment without Near-infrared radiation. Moreover, Pt-ARNPs showed comparable cytotoxicity against A549 and A549/cis cells, implying that the combination of satraplatin and aminopyrrolic receptor 1 with nano carrier might be a promising strategy to reduce platinum resistance and improve therapeutic effect in cancer therapy.
Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica , Nanopartículas , Neoplasias/tratamento farmacológico , Células A549 , Compostos de Anilina/química , Compostos de Anilina/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/química , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Preparações de Ação Retardada/química , Preparações de Ação Retardada/farmacologia , Células HeLa , Humanos , Raios Infravermelhos , Nanopartículas/química , Nanopartículas/uso terapêutico , Neoplasias/metabolismo , Compostos Organoplatínicos/química , Compostos Organoplatínicos/farmacologia , Poloxâmero/química , Poloxâmero/farmacologiaRESUMO
Bladder cancer is one of the major tumors for men in the world, in which therapy the combination of cisplatin and gemcitabine is still fist-line applied to treat with advanced or metastatic bladder cancer. In our early study, we developed a potential Pt(II) agent, DN604, which has anti-tumor effect as potent as cisplatin toward bladder cancers. Herein, we aim at investigating the combinatory application of DN604 with gemcitabine for bladder cancer treatment. In vitro studies proved that the combined treatment of DN604 and gemcitabine could limit cell proliferation by elevating the incidence of DNA damage induced apoptosis. Notably, further researches showed that the DN604-gemcitabine treatment suppressed cell autophagy to inhibit cell motility upon the ROS dependent p38 MAPK signaling pathway, explicating its better anti-tumor activity than single drug treatment or the cisplatin-gemcitabine treatment. In vivo tests confirmed that the DN604-gemcitabine treatment has superior anti-tumor activity with low toxicity to cisplatin or its combination with gemcitabine treatments. DN604 plus gemcitabine, is of great significance for the treatment with human bladder cancer. Our study has provided a potential combination treatment option.
Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Carboplatina/análogos & derivados , Desoxicitidina/análogos & derivados , Neoplasias da Bexiga Urinária/tratamento farmacológico , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/síntese química , Protocolos de Quimioterapia Combinada Antineoplásica/química , Apoptose/efeitos dos fármacos , Carboplatina/química , Carboplatina/farmacologia , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Desoxicitidina/química , Desoxicitidina/farmacologia , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Estrutura Molecular , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Relação Estrutura-Atividade , Células Tumorais Cultivadas , Neoplasias da Bexiga Urinária/metabolismo , Neoplasias da Bexiga Urinária/patologia , GencitabinaRESUMO
BACKGROUND: Survival rate of patients affected with anaplastic thyroid carcinoma (ATC) is less than 5% with current treatment. In ATC, BRAFV600E mutation is the major mutation that results in the transformation of normal cells in to an undifferentiated cancer cells via aberrant molecular signaling mechanisms. Although vemurufenib is a selective oral drug for the BRAFV600E mutant kinase with a response rate of nearly 50% in metastatic melanoma, our study has showed resistance to this drug in ATC. Hence the rationale of the study is to explore combinational therapeutic effect to improve the efficacy of vemurafenib along with metformin. Metformin, a diabetic drug is an AMPK activator and has recently proved to be involved in preventing or treating several types of cancer. METHODS AND RESULTS: Using iGEMDock software, a protein-ligand interaction was successful between Metformin and TSHR (receptor present in the thyroid follicular cells). Our study demonstrates that combination of vemurufenib with metformin has synergistic anti-cancer effects which was evaluated through MTT assay (cytotoxicity), colony formation assay (antiproliferation evaluation) and suppressed the progression of ATC cells growth by inducing significant apoptosis, proven by Annexin V-FITC assay (Early Apoptosis Detection). Downregulation of ERK signaling, upregulation of AMPK pathway and precision in epithelial-mesenchymal transition (EMT) pathway which were assessed by RT-PCR and Western blot provide the evidence that the combination of drugs involved in the precision of altered molecular signaling Further our results suggest that Metformin act as a demethylating agent in anaplastic thyroid cancer cells by inducing the expression of NIS and TSHR. Our study for the first time explored cAMP signaling in ATC wherein cAMP signaling is downregulated due to decrease in intracellular cAMP level upon metformin treatment. CONCLUSION: To conclude, our findings demonstrate novel therapeutic targets and treatment strategies for undifferentiated ATC.
Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica , Proteínas de Neoplasias , Receptores da Tireotropina , Carcinoma Anaplásico da Tireoide , Neoplasias da Glândula Tireoide , Protocolos de Quimioterapia Combinada Antineoplásica/química , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Linhagem Celular Tumoral , Sinergismo Farmacológico , Humanos , Metformina/química , Metformina/farmacologia , Proteínas de Neoplasias/química , Proteínas de Neoplasias/metabolismo , Receptores da Tireotropina/química , Receptores da Tireotropina/metabolismo , Carcinoma Anaplásico da Tireoide/química , Carcinoma Anaplásico da Tireoide/tratamento farmacológico , Carcinoma Anaplásico da Tireoide/metabolismo , Neoplasias da Glândula Tireoide/química , Neoplasias da Glândula Tireoide/tratamento farmacológico , Neoplasias da Glândula Tireoide/metabolismo , Vemurafenib/química , Vemurafenib/farmacologiaRESUMO
Drug resistance and inefficient localization of chemotherapeutic agent limit the current treatment strategy in locally advanced melanoma (MEL), accounting to the 10-year survival rate from 24% to 68%. In this study we constructed anti-PD-L1 conjugated and doxorubicin loaded hollow gold nanoshell (T-HGNS-DOX) for targeted and localized chemo-photothermal therapy of MEL by the conjugation of LA-PEG-anti-PD-L1 antibody and short PEG chain on the surface of HGNS-DOX. Near infrared (NIR) as well as pH dependent drug release profile was observed. Significant uptake of DOX following NIR due to high PD-L1 receptors resulted in pronounced anticancer effect of T-HGNS-DOX. Following intratumoral administration, maximum nanoparticles retention with the significant reduction in tumor growth was observed as a result of elevated apoptosis marker (cleaved caspase-3, cleaved PARP) as well as downregulation of proliferative (Ki-67) and angiogenesis marker (CD31). Cumulatively, our system avoids the systemic toxicities of the nanosystem thereby providing maximum chemotherapeutic retention in tumor.
Assuntos
Anticorpos Monoclonais Humanizados/química , Doxorrubicina/química , Ouro/química , Melanoma/tratamento farmacológico , Melanoma/radioterapia , Nanocápsulas/química , Nanoconchas/química , Animais , Anticorpos Monoclonais Humanizados/metabolismo , Antineoplásicos/química , Antineoplásicos/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/química , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Apoptose/efeitos dos fármacos , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Permeabilidade da Membrana Celular , Proliferação de Células/efeitos dos fármacos , Doxorrubicina/farmacologia , Composição de Medicamentos , Liberação Controlada de Fármacos , Humanos , Concentração de Íons de Hidrogênio , Masculino , Camundongos Endogâmicos C57BL , Terapia de Alvo Molecular , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Fototerapia , Propriedades de SuperfícieRESUMO
In the present study, a magnetic niosomal nanocarrier for co-delivery of curcumin and letrozole into breast cancer cells has been designed. The magnetic NiCoFe2O4 core was coated by a thin layer of silica, followed by a niosomal structure, allowing us to load letrozole and curcumin into the silica layer and niosomal layer, respectively, and investigate their synergic effects on breast cancer cells. Furthermore, the nanocarriers demonstrated a pH-dependent release due to the niosomal structure at their outer layer, which is a promising behavior for cancer treatment. Additionally, cellular assays revealed that the nanocarriers had low cellular uptake in the case of non-tumorigenic cells (i.e., MCF-10A) and related high viability but high cellular uptake in cancer cell lines (i.e., MDA-MB-231 and SK-BR-3) and related low viability, which is evidenced in their high cytotoxicity against different breast cancer cell lines. The cytotoxicity of the letrozole/curcumin co-loaded nanocarrier is higher than that of the aqueous solutions of both drugs, indicating their enhanced cellular uptake in their encapsulated states. In particular, NiCoFe2O4@L-Silica-L@C-Niosome showed the highest cytotoxicity effects on MDA-MB-231 and SK-BR-3 breast cancer cells. The observed cytotoxicity was due to regulation of the expression levels of the studied genes in breast cancer cells, where downregulation was observed for the Bcl-2, MMP 2, MMP 9, cyclin D, and cyclin E genes while upregulation of the expression of the Bax, caspase-3, and caspase-9 genes was observed. The flow cytometry results also revealed that NiCoFe2O4@L-Silica-L@C-Niosome enhanced the apoptosis rate in both MDA-MB-231 and SK-BR-3 cells compared to the control samples. The findings of our research show the potential of designing magnetic niosomal formulations for simultaneous targeted delivery of both hydrophobic and hydrophilic drugs into cancer cells in order to enhance their synergic chemotherapeutic effects. These results could open new avenues into the future of nanomedicine and the development of theranostic agents.
Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica , Neoplasias da Mama/tratamento farmacológico , Campos Magnéticos , Protocolos de Quimioterapia Combinada Antineoplásica/química , Protocolos de Quimioterapia Combinada Antineoplásica/farmacocinética , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Curcumina/química , Curcumina/farmacocinética , Curcumina/farmacologia , Feminino , Humanos , Letrozol/química , Letrozol/farmacocinética , Letrozol/farmacologia , Lipossomos , Nanopartículas de Magnetita/química , Nanopartículas de Magnetita/uso terapêutico , Proteínas de Neoplasias/metabolismoRESUMO
Queen bee acid or 10-hydroxy-2-decenoic acid (10-HDA) is one of the main and unique lipid components (fatty acids) in royal jelly. Previous studies have demonstrated that 10-HDA has various pharmacological and biological activities. The present study aims to evaluate the anti-tumor effects of 10-HDA alone and combined with cyclophosphamide (CP), as an alkylating agent which widely used for the treatment of neoplastic cancers, against the Ehrlich solid tumors (EST) in mice. Methods: A total of 72 female Swiss albino mice were divided into eight groups. EST mice were treated with 10-HDA (2.5 and 5 mg/kg) alone and combined with CP (25 mg/kg) orally once a day for 2 weeks. Tumor growth inhibition, body weight, the serum level of alpha-fetoprotein (AFP) and carcinoembryonic antigen tumor (CAE), liver and kidney enzymes, tumor lipid peroxidation (LPO) and nitric oxide (NO), antioxidant enzymes (e.g. glutathione reductase (GR), glutathione peroxidase (GPx), catalase enzyme (CAT)), tumor necrosis factor alpha level (TNF-α), and the apoptosis-regulatory genes expression were assessed in tested mice. Results: the findings exhibited that treatment of EST-suffering mice with 10-HDA at the doses of 2.5 and 5 mg/kg especially in combination with CP significantly (p < 0.001) decreased the tumor volume and inhibition rate, tumor markers (AFP and CEA), serum level of liver and kidney, LPO and NO, TNF-α level, as well as the expression level of Bcl-2 in comparison with the mice in the C2 group; while 10-HDA at the doses of 2.5 and 5 mg/kg especially in combination with CP significantly (p < 0.001) improved the level of antioxidant enzymes of GPx, CAT, and SOD and the expression level of caspase-3 and Bax genes. Conclusions: According to the results of the present investigations, 10-HDA at the doses of 2.5 and 5 mg/kg especially in combination with CP showed promising antitumor effects against EST in mice and can be recommended as a new or alternative anticancer agent against tumor; nevertheless, further investigations, particularly in clinical setting, are required to confirm these results.
Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Carcinoma de Ehrlich , Ácidos Graxos Monoinsaturados/farmacologia , Proteínas de Neoplasias/metabolismo , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/química , Carcinoma de Ehrlich/tratamento farmacológico , Carcinoma de Ehrlich/metabolismo , Carcinoma de Ehrlich/patologia , Ciclofosfamida/química , Ciclofosfamida/farmacologia , Relação Dose-Resposta a Droga , Ácidos Graxos/química , Ácidos Graxos Monoinsaturados/química , Feminino , CamundongosRESUMO
Prostate cancer (PCa) is one of the most prevalent non-drug delivery system cutaneous malignancies. Undoubtedly, introducing novel treatment options to achieve higher therapeutic index will be worthwhile. In this study, we report for the first time, a novel targeted self-assembled based on PEG-PLA nanoparticles (PEG-PLA NPs) containing galbanic acid (GBA) and docetaxel, which was targeted using ((S)-2-(3-((S)-5-amino-1-carboxypentyl) ureido) pentanedioic acid (ACUPA), a small molecule inhibitor targeting prostate-specific membrane antigen (PSMA), in prostate cancer cell line. The prepared NPs were characterized by different analytical methods. The MTT assay was used to compare the anti-proliferation of drugs-loaded PEG-PLA NPs and ACUPA-PEG-PLA against LNCaP (PSMA+ ) and PC3 (PSMA- ) cells. PEG-PLA NPs with an average size of 130-140 nm had an enhanced release of GBA and docetaxel at pH 5.5 compared with pH 7.5. Spectrofluorometric analysis suggested that ACUPA-modified PEG-PLA could effectively enhance the drug uptake in PSMA+ prostate cancer cells. Cytotoxicity studies showed that the targeted NPs loaded with different concentrations of GBA and fixed concentration of docetaxel (4 nM) have shown higher toxicity (IC50 30 ± 3 µM) than both free GBA (80 ± 4.5 µM) and nontargeted NPs (IC50 40 ± 4.6 µM) in LNCaP cells. Collectively, these findings suggest that ACUPA-conjugated PEG-PLA nanosystem containing GBA and docetaxel is a viable delivery carrier for various cancer-targeting PSMA that suffer from short circulation half-life and limited therapeutic efficacy.
Assuntos
Antígenos de Superfície/metabolismo , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Cumarínicos/farmacologia , Docetaxel/farmacologia , Portadores de Fármacos , Glutamato Carboxipeptidase II/metabolismo , Glutaratos/química , Nanopartículas , Polietilenoglicóis/química , Neoplasias da Próstata/tratamento farmacológico , Protocolos de Quimioterapia Combinada Antineoplásica/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cumarínicos/química , Cumarínicos/metabolismo , Docetaxel/química , Docetaxel/metabolismo , Composição de Medicamentos , Liberação Controlada de Fármacos , Glutaratos/metabolismo , Humanos , Ligantes , Masculino , Células PC-3 , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologiaRESUMO
CD8+ T cells play a vital role in cancer immunotherapy and can be shaped by metabolism. Avasimibe is an acyl coenzyme A-cholesterol acyltransferase (ACAT) inhibitor, which has been clinically verified safe in other phase â ¢ clinical trials. It can potentiate the killing function of CD8+ T cells by modulating cholesterol metabolism. Doxorubicin (DOX) is an anticancer drug widely used in many cancers to induce tumor cell apoptosis. Unfortunately, DOX also can induce toxic and side effects in many organs, compromising its usage and efficacy. Herein, we report the combinational usage of avasimibe and a safe pH sensitive nano-drug delivery system composing of DOX and metal-organic frameworks nanoparticles (MNPs). Our findings demonstrated that DOX-MNPs treatment inhibited tumor growth with good safety profile and avasimibe treatment combined DOX-MNPs treatment exhibited a better efficacy than monotherapies in 4T1 breast cancer therapy.
Assuntos
Acetamidas/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Neoplasias da Mama/tratamento farmacológico , Doxorrubicina/farmacologia , Portadores de Fármacos , Imunoterapia , Nanopartículas Metálicas , Sulfonamidas/farmacologia , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/química , Protocolos de Quimioterapia Combinada Antineoplásica/toxicidade , Apoptose/efeitos dos fármacos , Neoplasias da Mama/imunologia , Neoplasias da Mama/patologia , Citotoxicidade Imunológica/efeitos dos fármacos , Doxorrubicina/química , Doxorrubicina/toxicidade , Composição de Medicamentos , Feminino , Humanos , Linfócitos do Interstício Tumoral/efeitos dos fármacos , Linfócitos do Interstício Tumoral/imunologia , Células MCF-7 , Camundongos Endogâmicos BALB C , Camundongos Nus , Linfócitos T Citotóxicos/efeitos dos fármacos , Linfócitos T Citotóxicos/imunologia , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Chemotherapy for non-small cell lung cancer (NSCLC) is far from satisfactory, mainly due to poor targeting of antitumor drugs and self-adaptations of the tumors. Angiogenesis, vasculogenic mimicry (VM) channels, migration, and invasion are the main ways for tumors to obtain nutrition. Herein, RPV-modified epirubicin and dioscin co-delivery liposomes were successfully prepared. These liposomes showed ideal physicochemical properties, enhanced tumor targeting and accumulation in tumor sites, and inhibited VM channel formation, tumor angiogenesis, migration and invasion. The liposomes also downregulated VM-related and angiogenesis-related proteins in vitro. Furthermore, when tested in vivo, the targeted co-delivery liposomes increased selective accumulation of drugs in tumor sites and showed extended stability in blood circulation. In conclusion, RPV-modified epirubicin and dioscin co-delivery liposomes showed strong antitumor efficacy in vivo and could thus be considered a promising strategy for NSCLC treatment.
Assuntos
Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Peptídeos Penetradores de Células/química , Diosgenina/análogos & derivados , Epirubicina/administração & dosagem , Neoplasias Pulmonares/tratamento farmacológico , Neovascularização Patológica/tratamento farmacológico , Células A549 , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica/química , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Diosgenina/administração & dosagem , Diosgenina/química , Diosgenina/farmacologia , Epirubicina/química , Epirubicina/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Lipossomos , Neoplasias Pulmonares/patologia , Masculino , Camundongos , Ratos , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Conventional drug solubilization strategies limit the understanding of the full potential of poorly water-soluble drugs during drug screening. Here, we propose a screening approach in which poorly water-soluble drugs are entrapped in poly(2-(methacryloyloxyethyl phosphorylcholine)-poly(2-(diisopropylaminoethyl methacryate) (PMPC-PDPA) polymersomes (POs) to enhance drug solubility and facilitate intracellular delivery. By using a human pediatric glioma cell model, we demonstrated that PMPC-PDPA POs mediated intracellular delivery of cytotoxic and epigenetic drugs by receptor-mediated endocytosis. Additionally, when delivered in combination, drug-loaded PMPC-PDPA POs triggered both an enhanced drug efficacy and synergy compared to that of a conventional combinatorial screening. Hence, our comprehensive synergy analysis illustrates that our screening methodology, in which PMPC-PDPA POs are used for intracellular codelivery of drugs, allows us to identify potent synergistic profiles of anticancer drugs.
Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Portadores de Fármacos/química , Glioma/tratamento farmacológico , Fosforilcolina/análogos & derivados , Ácidos Polimetacrílicos/química , Protocolos de Quimioterapia Combinada Antineoplásica/química , Protocolos de Quimioterapia Combinada Antineoplásica/farmacocinética , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Sinergismo Farmacológico , Endocitose , Glioma/patologia , Humanos , Concentração de Íons de Hidrogênio , Nanopartículas/química , Fosforilcolina/química , SolubilidadeRESUMO
Curcumin (CUR), a polyphenol derived from turmeric, exhibits anticancer and anti-inflammatory properties. However, it has poor water solubility, stability, and oral bioavailability. To overcome these limitations, lipid-polyester mixed nanoparticles (NPs) embedded in enteric polymer-EudragitL100-55(Eu) were formulated (CUR-NPs-Eu). NPs composed of mPEG-b-PCL have a hybrid core made up of middle chain triglyceride (MCT) and poly(ε-caprolactone) (PCL) for enhancing drug loading. The CUR-NPs with MCT content of 10% had a particle size of 121.2 ± 16.8 nm, ζ potential of -16.25 ± 1.38 mV, drug loading of 9.8%, and encapsulation efficiency of 87.4%. The transport of the CUR-NPs-Eu across Caco-2 monolayers is enhanced compared with CUR alone (1.98 ± 0.94 × 10-6 of curcumin versus 55.43 ± 6.06 × 10-6 cm/s of curcumin-loaded NPs) because of the non-disassociated nanostructure during absorption. The absolute bioavailability of CUR-NPs-Eu was 7.14%, which was drastically improved from 1.08% of the CUR suspension (CUR-Sus). Therefore, in the xenograft 4T1 tumor-bearing mice, increased drug accumulation in heart and tumor was noticed because of enhanced oral bioavailability of CUR. The chemosensitizing effect of CUR was attributed to its NF-κB reduction effect (148 ± 11.83 of DOX alone versus 104 ± 8.71 of combined therapy, ng/g tissue). The cardioprotective effect of CUR was associated with maintenance of cardiac antioxidant enzyme activity and down-regulation of NF-κB. This study provided a partial illustration of the mechanisms of chemosensitizing and cardioprotective effects of CUR utilizing the oral availability promotion effect brought by the NPs-Eu formulation. And these results further demonstrated that the capability of this NPs-Eu system in oral delivery of poorly soluble and poorly permeable drugs.
Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacocinética , Neoplasias da Mama/tratamento farmacológico , Cardiotoxicidade/prevenção & controle , Curcumina/farmacocinética , Doxorrubicina/farmacocinética , Portadores de Fármacos/química , Administração Oral , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica/química , Protocolos de Quimioterapia Combinada Antineoplásica/toxicidade , Disponibilidade Biológica , Neoplasias da Mama/patologia , Células CACO-2 , Cardiotoxicidade/etiologia , Curcumina/administração & dosagem , Curcumina/química , Modelos Animais de Doenças , Doxorrubicina/administração & dosagem , Doxorrubicina/química , Doxorrubicina/toxicidade , Estabilidade de Medicamentos , Sinergismo Farmacológico , Feminino , Humanos , Absorção Intestinal , Masculino , Camundongos , Nanopartículas/química , Tamanho da Partícula , Poliésteres/química , Polietilenoglicóis/química , Ratos , Distribuição TecidualRESUMO
PURPOSE: Development of a nanoplatform constructed by the PEG-dual drug conjugation for co-delivery of paclitaxel (PTX) and Dihydroartemisinin (DHA) to the tumor. METHODS: PEG was conjugated with PTX and DHA to form PTX-PEG-DHA complex as a nanocarrier. The PTX and DHA were co-encapsulated in PTX-PEG-DHA nanoparticles (PD@PPD NPs) by the emulsion evaporation method. The physicochemical properties of PD@PPD Nps were characterized, including size, zeta potential, and morphology. The drug loading capacity and entrapment efficiency, in vitro drug release at different pH conditions were also evaluated. For in vitro assessment, the effects of the NPs on HT-29 colorectal cancer cells, including intracellular uptake, cytotoxicity, and Bcl-2 protein expression were assessed. The in vivo distribution of the NPs was investigated by labelling the NPs with Cyanine 5.5 fluorophore. Finally, the antitumor efficacy of the NPs was evaluated in HT-29 tumor-bearing mice. RESULTS: The nanoparticles were formed at small size (~114 nm) and narrow distribution. The combination of PTX and DHA in the DHA-PEG-PTX nanosystems (PD@PPD) showed remarkably increased apoptosis in colorectal adenocarcinoma HT-29 cells, as compared to free drug treatment. More importantly, the PD@PPD nanoparticles exhibited significantly higher accumulation in the tumor site owing to the enhanced permeability and retention (EPR) effect, effectively restrained the tumor growth in vivo at low-dose of PTX while reducing the systemic toxicity. CONCLUSIONS: The combination of PTX and DHA in a PEG-conjugated dual-drug co-delivery system can minimize the severe side effect associated with the high-dose of PTX while enhancing the antitumor efficacy.
Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/química , Artemisininas/química , Neoplasias Colorretais/tratamento farmacológico , Nanocápsulas/química , Paclitaxel/química , Polietilenoglicóis/química , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Apoptose/efeitos dos fármacos , Artemisininas/farmacologia , Permeabilidade da Membrana Celular , Composição de Medicamentos , Liberação Controlada de Fármacos , Corantes Fluorescentes/química , Regulação da Expressão Gênica/efeitos dos fármacos , Células HT29 , Humanos , Camundongos Endogâmicos BALB C , Camundongos Nus , Imagem Óptica , Paclitaxel/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/genética , Distribuição TecidualRESUMO
PURPOSE: This study aimed to develop a hydrogel system for treating aggressive triple negative breast cancer (TNBC) via kinetically-controlled delivery of the synergistic drug pair doxorubicin (DOX) and gemcitabine (GEM). A 2D assay was adopted to evaluate therapeutic efficacy by determining combination index (CI), and a 3D assay using cancer spheroids was implemented to assess the potential for translation in vivo. METHODS: The release of DOX and GEM from an acetylated-chitosan (ACS, degree of acetylation χAc = 40 ± 5%) was characterized to identify a combined drug loading that affords release kinetics and dose that are therapeutically synergistic. The selected DOX/GEM-ACS formulation was evaluated in vitro with 2-D and 3-D models of TNBC to determine the combination index (CI) and the tumor volume reduction, respectively. RESULTS: Therapeutically desired release dosages and kinetics of GEM and DOX were achieved. When evaluated with a 2-D model of TNBC, the hydrogel afforded a CI of 0.14, indicating a stronger synergism than concurrent administration of DOX and GEM (CI = 0.23). Finally, the therapeutic hydrogel accomplished a notable volume reduction of the cancer spheroids (up to 30%), whereas the corresponding dosages of free drugs only reduced growth rate. CONCLUSIONS: The ACS hydrogel delivery system accomplishes drug release kinetics and molar ratio that affords strong therapeutically synergism. These results, in combination with the choice of ACS as affordable and highly abundant source material, provide a strong pre-clinical demonstration of the potential of the proposed system for complementing surgical resection of aggressive solid tumors.
Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Quitosana/química , Desoxicitidina/análogos & derivados , Doxorrubicina/farmacologia , Portadores de Fármacos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Acetilação , Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Desoxicitidina/administração & dosagem , Desoxicitidina/química , Desoxicitidina/farmacologia , Doxorrubicina/administração & dosagem , Doxorrubicina/química , Composição de Medicamentos , Liberação Controlada de Fármacos , Sinergismo Farmacológico , Feminino , Humanos , Hidrogéis , Cinética , Esferoides Celulares , Neoplasias de Mama Triplo Negativas/patologia , GencitabinaRESUMO
PURPOSE: The intratumoral heterogeneity observed in breast cancer (BC), in particular with regard to cell surface receptor expression, can hinder the success of many targeted cancer therapies. The development of novel therapeutic agents that target more than one receptor can overcome this inherent property of tumors and can facilitate their selective internalization in cancer cells. The goal of this study is to develop a drug combination-loaded nanoparticle (NP) formulation that is actively-targeted to HER2 and EGFR receptors on BC cells. METHODS: A polymeric NP formulation was prepared which co-encapsulated a synergistic combination of the chemotherapeutic agent, paclitaxel (PTX), and the mTOR inhibitor, everolimus (EVER), and is targeted to HER2 and EGFR receptors on BC cells using antibody Fab fragments as the targeting moieties. The physicochemical characteristics of the dual-targeted formulation (Dual-NP) were evaluated, along with its cytotoxic profile (in both, monolayer and 3D BC models), as well as the degree of cellular uptake in HER2high/EGFRmod and HER2neg/EGFRlow BC cells. RESULTS: Dual-NPs were found to have significantly higher cytotoxicity relative to HER2 mono-targeted (T-NPs) and untargeted NPs (UT-NPs) in HER2high/EGFRmod monolayer BC cells after 72 h exposure, while no significant difference was observed in HER2neg/EGFRlow cells. However, in the HER2high/EGFRmod spheroids, the cytotoxicity of Dual-NPs was comparable to that of T-NPs. This was thought to be attributed to the previously reported downregulation of EGFR in 3D in comparison to 2D BC models. Dual-NPs had significantly higher cellular uptake relative to UT-NPs and T-NPs in HER2high/EGFRmod BC cells after 24 h exposure, whereas in the HER2neg/EGFRlow cells, the increase in cellular uptake of the Dual-NPs was not as high as the level achieved in the HER2high/EGFRmod cells. Blocking HER2 and EGFR significantly reduced the uptake of T-NPs and Dual-NPs in the HER2high/EGFRmod BC cells, demonstrating specific binding to both EGFR and HER2. CONCLUSIONS: The dual-targeting strategy developed in this study in conjunction with a potentially promising delivery vector for a synergistic combination therapy can overcome receptor heterogeneity, yielding significant improvements in the cytotoxicity and cellular uptake in BC cells.