Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.197
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Immunity ; 45(6): 1258-1269, 2016 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-27939674

RESUMO

Programmed death and shedding of epithelial cells is a powerful defense mechanism to reduce bacterial burden during infection but this activity cannot be indiscriminate because of the critical barrier function of the epithelium. We report that during cystitis, shedding of infected bladder epithelial cells (BECs) was preceded by the recruitment of mast cells (MCs) directly underneath the superficial epithelium where they docked and extruded their granules. MCs were responding to interleukin-1ß (IL-1ß) secreted by BECs after inflammasome and caspase-1 signaling. Upon uptake of granule-associated chymase (mouse MC protease 4 [mMCPT4]), BECs underwent caspase-1-associated cytolysis and exfoliation. Thus, infected epithelial cells require a specific cue for cytolysis from recruited sentinel inflammatory cells before shedding.


Assuntos
Quimases/imunologia , Citotoxinas/imunologia , Células Epiteliais/microbiologia , Mastócitos/imunologia , Infecções Urinárias/imunologia , Animais , Degranulação Celular/imunologia , Linhagem Celular , Grânulos Citoplasmáticos/química , Feminino , Imunofluorescência , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
2.
Clin Infect Dis ; 78(3): 788-796, 2024 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-37823481

RESUMO

BACKGROUND: Dengue cases continue to rise and can overwhelm healthcare systems during outbreaks. In dengue, neutrophil mediators, soluble urokinase plasminogen activator receptor (suPAR) and olfactomedin 4, and mast cell mediators, chymase and tryptase, have not been measured longitudinally across the dengue phases. The utility of these proteins as prognostic biomarkers for severe dengue has also not been assessed in an older adult population. METHODS: We prospectively enrolled 99 adults with dengue-40 dengue fever, 46 dengue with warning signs and 13 severe dengue, along with 30 controls. Plasma levels of suPAR, olfactomedin 4, chymase and tryptase were measured at the febrile, critical and recovery phases in dengue patients. RESULTS: The suPAR levels were significantly elevated in severe dengue compared to the other dengue severities and controls in the febrile (P < .001), critical (P < .001), and recovery (P = .005) phases. In the febrile phase, suPAR was a prognostic biomarker of severe dengue, with an AUROC of 0.82. Using a cutoff derived from Youden's index (5.4 ng/mL) and an estimated prevalence of severe dengue (16.5%) in our healthcare institution, the sensitivity was 71.4% with a specificity of 87.9% in the febrile phase, and the positive and negative predictive values were 54.7% and 95.8%, respectively. Olfactomedin 4 was elevated in dengue patients but not in proportion to disease severity in the febrile phase (P = .04) There were no significant differences in chymase and tryptase levels between dengue patients and controls. CONCLUSIONS: In adult dengue, suPAR may be a reliable prognostic biomarker for severe dengue in the febrile phase.


Assuntos
Proteínas da Matriz Extracelular , Glicoproteínas , Receptores de Ativador de Plasminogênio Tipo Uroquinase , Dengue Grave , Humanos , Idoso , Biomarcadores , Prognóstico , Quimases , Triptases , Dengue Grave/diagnóstico
3.
J Am Chem Soc ; 146(18): 12656-12663, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38683724

RESUMO

Tumor-associated mast cells (TAMCs) have been recently revealed to play a multifaceted role in the tumor microenvironment. Noninvasive optical imaging of TAMCs is thus highly desired to gain insights into their functions in cancer immunotherapy. However, due to the lack of a single enzyme that is specific to mast cells, a common probe design approach based on single-enzyme activation is not applicable. Herein, we reported a bienzyme-locked molecular probe (THCMC) based on a photoinduced electron transfer-intramolecular charge-transfer hybrid strategy for in vivo imaging of TAMCs. The bienzyme-locked activation mechanism ensures that THCMC exclusively turns on near-infrared (NIR) fluorescence only in the presence of both tryptase and chymase specifically coexpressed by mast cells. Thus, THCMC effectively distinguishes mast cells from other leukocytes, including T cells, neutrophils, and macrophages, a capability lacking in single-locked probes. Such a high specificity of THCMC allows noninvasive tracking of the fluctuation of TAMCs in the tumor of living mice during cancer immunotherapy. The results reveal that the decreased intratumoral signal of THCMC after combination immunotherapy correlates well with the reduced population of TAMCs, accurately predicting the inhibition of tumor growth. Thus, this study not only presents the first NIR fluorescent probe specific for TAMCs but also proposes a generic bienzyme-locked probe design approach for in vivo cell imaging.


Assuntos
Corantes Fluorescentes , Mastócitos , Imagem Óptica , Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química , Animais , Camundongos , Triptases/metabolismo , Humanos , Quimases/metabolismo , Neoplasias/diagnóstico por imagem , Linhagem Celular Tumoral
4.
Am J Physiol Gastrointest Liver Physiol ; 327(3): G466-G480, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39010833

RESUMO

Acute pancreatitis, an acute inflammatory injury of the pancreas, lacks a specific treatment. The circulatory protein renalase is produced by the kidney and other tissues and has potent anti-inflammatory and prosurvival properties. Recombinant renalase can reduce the severity of mild cerulein pancreatitis; the activity is contained in a conserved 20 aa renalase site (RP220). Here, we investigated the therapeutic effects of renalase on pancreatitis using two clinically relevant models of acute pancreatitis. The ability of peptides containing the RP220 site to reduce injury in a 1-day post-endoscopic retrograde cholangiopancreatography (ERCP) and a 2-day severe cerulein induced in mice was examined. The initial dose of renalase peptides was given either prophylactically (before) or therapeutically (after) the initiation of the disease. Samples were collected to determine early pancreatitis responses (tissue edema, plasma amylase, active zymogens) and later histologic tissue injury and inflammatory changes. In both preclinical models, renalase peptides significantly reduced histologic damage associated with pancreatitis, especially inflammation, necrosis, and overall injury. Quantifying inflammation using specific immunohistochemical markers demonstrated that renalase peptides significantly reduced overall bone marrow-derived inflammation and neutrophils and macrophage populations in both models. In the severe cerulein model, administering a renalase peptide with or without pretreatment significantly reduced injury. Pancreatitis and renalase peptide effects appeared to be the same in female and male mice. These studies suggest renalase peptides that retain the anti-inflammatory and prosurvival properties of recombinant renalase can reduce the severity of acute pancreatitis and might be attractive candidates for therapeutic development.NEW & NOTEWORTHY Renalase is a secretory protein. The prosurvival and anti-inflammatory effects of the whole molecule are contained in a 20 aa renalase site (RP220). Systemic treatment with peptides containing this renalase site reduced the severity of post-endoscopic retrograde cholangiopancreatography (ERCP) and severe cerulein pancreatitis in mouse models.


Assuntos
Ceruletídeo , Camundongos Endogâmicos C57BL , Pancreatite , Animais , Pancreatite/prevenção & controle , Pancreatite/patologia , Masculino , Camundongos , Feminino , Modelos Animais de Doenças , Índice de Gravidade de Doença , Peptídeos/farmacologia , Pâncreas/patologia , Pâncreas/efeitos dos fármacos , Pâncreas/metabolismo , Anti-Inflamatórios/farmacologia , Quimases/metabolismo , Monoaminoxidase
5.
Exp Dermatol ; 33(1): e14894, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37522746

RESUMO

Mast cells have traditionally been associated with allergic inflammatory responses; however, they play important roles in cutaneous innate immunity and wound healing. The Hidradenitis Suppurativa tissue transcriptome is associated with alterations in innate immunity and wound healing-associated pathways; however, the role of mast cells in the disease is unexplored. We demonstrate that mast cell-associated gene expression (using whole tissue RNAseq) is upregulated, and in-silico cellular deconvolution identifies activated mast cells upregulated and resting mast cells downregulated in lesional tissue. Tryptase/Chymase positive mast cells (identified using IHC) localize adjacent to epithelialized tunnels, fibrotic regions of the dermis and at perivascular sites associated with Neutrophil Extracellular Trap formation and TNF-alpha production. Treatment with Spleen Tyrosine Kinase antagonist (Fostamatinib) reduces the expression of mast cell-associated gene transcripts, associated biochemical pathways and the number of tryptase/chymase positive mast cells in lesional hidradenitis suppurativa tissue. This data indicates that although mast cells are not the most abundant cell type in Hidradenitis Suppurativa tissue, the dysregulation of mast cells is paralleled with B cell/plasma cell inflammation, inflammatory epithelialized tunnels and epithelial budding. This provides an explanation as to the mixed inflammatory activation signature seen in HS, the correlation with dysregulated wound healing and potential pathways involved in the development of epithelialized tunnels.


Assuntos
Hidradenite Supurativa , Humanos , Quimases , Mastócitos/metabolismo , Quinase Syk , Triptases
6.
Immunity ; 43(4): 788-802, 2015 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-26410628

RESUMO

Experimental IgE-mediated food allergy depends on intestinal anaphylaxis driven by interleukin-9 (IL-9). However, the primary cellular source of IL-9 and the mechanisms underlying the susceptibility to food-induced intestinal anaphylaxis remain unclear. Herein, we have reported the identification of multifunctional IL-9-producing mucosal mast cells (MMC9s) that can secrete prodigious amounts of IL-9 and IL-13 in response to IL-33, and mast cell protease-1 (MCPt-1) in response to antigen and IgE complex crosslinking, respectively. Repeated intragastric antigen challenge induced MMC9 development that required T cells, IL-4, and STAT6 transcription factor, but not IL-9 signals. Mice ablated of MMC9 induction failed to develop intestinal mastocytosis, which resulted in decreased food allergy symptoms that could be restored by adoptively transferred MMC9s. Finally, atopic patients that developed food allergy displayed increased intestinal expression of Il9- and MC-specific transcripts. Thus, the induction of MMC9s is a pivotal step to acquire the susceptibility to IgE-mediated food allergy.


Assuntos
Hipersensibilidade Alimentar/imunologia , Imunoglobulina E/imunologia , Interleucina-9/metabolismo , Mucosa Intestinal/imunologia , Mastócitos/imunologia , Mastocitose/imunologia , Transferência Adotiva , Anafilaxia/etiologia , Anafilaxia/imunologia , Animais , Sequência de Bases , Células da Medula Óssea/citologia , Linhagem da Célula , Quimases/biossíntese , Quimases/genética , Diarreia/etiologia , Diarreia/imunologia , Suscetibilidade a Doenças , Duodeno/imunologia , Duodeno/patologia , Hipersensibilidade Alimentar/etiologia , Hipersensibilidade Alimentar/patologia , Humanos , Hipersensibilidade Imediata/complicações , Interleucina-9/biossíntese , Interleucina-9/genética , Interleucinas/biossíntese , Interleucinas/metabolismo , Interleucinas/fisiologia , Mastócitos/metabolismo , Mastócitos/transplante , Mastocitose/patologia , Camundongos , Camundongos Endogâmicos , Dados de Sequência Molecular , Ovalbumina/administração & dosagem , Ovalbumina/imunologia , Ovalbumina/toxicidade , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Fator de Transcrição STAT6/fisiologia , Especificidade da Espécie , Linfócitos T/imunologia
7.
Protein Expr Purif ; 215: 106414, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38072143

RESUMO

Severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) is the causative pathogen of coronavirus disease-19 (COVID-19). The COVID-19 pandemic has resulted in millions of deaths and widespread socio-economic damage worldwide. Therefore, numerous studies have been conducted to identify effective measures to control the spreading of the virus. Among various potential targets, the 3 chymotrypsin-like protease (3CLpro), also known as Mpro, stands out as the key protease of SARS-CoV-2, playing an essential role in virus replication and assembly, is the most prospective. In this study, we modified the commercial vector, pETM33-Nsp5-Mpro (plasmid # 156475, Addgene, USA), by inserting an autocleavage site (AVLQ) of 3CLpro and 6 × His-tag encoding sequences before and after the Nsp5-Mpro sequence, respectively. This modification enabled the expression of 3CLpro as an authentic N terminal protease (au3CLpro), which was purified to electrophoretic homogeneity by a single-step chromatography using two tandem Glutathione- and Ni-Sepharose columns. The enzyme au3CLpro demonstrated significantly higher activity (3169 RFU/min/µg protein) and catalytic efficiency (Kcat/Km of 0.007 µM-1.s-1) than that of the 3CLpro (com3CLpro) expressed from the commercial vector (pETM33-Nsp5-Mpro) with specific activity 889 RFU/min/µg and Kcat/Km of 0.0015 µM-1.s-1, respectively. Optimal conditions for au3CLpro activity included a 50 mM Tris-HCl buffer at pH 7, containing 150 mM NaCl and 0.1 mg/ml BSA at 37 °C.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Quimases , Pandemias , Estudos Prospectivos , Peptídeo Hidrolases/metabolismo , Inibidores de Proteases , Antivirais/uso terapêutico , Simulação de Acoplamento Molecular
8.
Int J Mol Sci ; 25(7)2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38612858

RESUMO

Thymic stromal lymphopoietin (TSLP), mainly expressed by epithelial cells, plays a central role in asthma. In humans, TSLP exists in two variants: the long form TSLP (lfTSLP) and a shorter TSLP isoform (sfTSLP). Macrophages (HLMs) and mast cells (HLMCs) are in close proximity in the human lung and play key roles in asthma. We evaluated the early proteolytic effects of tryptase and chymase released by HLMCs on TSLP by mass spectrometry. We also investigated whether TSLP and its fragments generated by these enzymes induce angiogenic factor release from HLMs. Mass spectrometry (MS) allowed the identification of TSLP cleavage sites caused by tryptase and chymase. Recombinant human TSLP treated with recombinant tryptase showed the production of 1-97 and 98-132 fragments. Recombinant chymase treatment of TSLP generated two peptides, 1-36 and 37-132. lfTSLP induced the release of VEGF-A, the most potent angiogenic factor, from HLMs. By contrast, the four TSLP fragments generated by tryptase and chymase failed to activate HLMs. Long-term TSLP incubation with furin generated two peptides devoid of activating property on HLMs. These results unveil an intricate interplay between mast cell-derived proteases and TSLP. These findings have potential relevance in understanding novel aspects of asthma pathobiology.


Assuntos
Asma , Linfopoietina do Estroma do Timo , Humanos , Triptases , Quimases , Indutores da Angiogênese , Serina Proteases , Citocinas
9.
Proteomics ; 23(15): e2300040, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37226369

RESUMO

Synovial fluid (SF) may contain cleavage products of proteolytic activities. Our aim was to characterize the degradome through analysis of proteolytic activity and differential abundance of these components in a peptidomic analysis of SF in knee osteoarthritis (OA) patients versus controls (n = 23). SF samples from end-stage knee osteoarthritis patients undergoing total knee replacement surgery and controls, that is, deceased donors without known knee disease were previously run using liquid chromatography mass spectrometry (LC-MS). This data was used to perform new database searches generating results for non-tryptic and semi-tryptic peptides for studies of degradomics in OA. We used linear mixed models to estimate differences in peptide-level expression between the two groups. Known proteolytic events (from the MEROPS peptidase database) were mapped to the dataset, allowing the identification of potential proteases and which substrates they cleave. We also developed a peptide-centric R tool, proteasy, which facilitates analyses that involve retrieval and mapping of proteolytic events. We identified 429 differentially abundant peptides. We found that the increased abundance of cleaved APOA1 peptides is likely a consequence of enzymatic degradation by metalloproteinases and chymase. We identified metalloproteinase, chymase, and cathepsins as the main proteolytic actors. The analysis indicated increased activity of these proteases irrespective of their abundance.


Assuntos
Osteoartrite do Joelho , Humanos , Osteoartrite do Joelho/metabolismo , Líquido Sinovial/química , Líquido Sinovial/metabolismo , Quimases/análise , Quimases/metabolismo , Peptídeo Hidrolases/análise , Peptídeos/análise
10.
J Med Virol ; 95(3): e28609, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36840402

RESUMO

The ongoing pandemic of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has posed a major public health threat worldwide and emphasizes an urgent need for effective therapeutics. Recently, Ordonez et al. identified sulforaphane (SFN) as a novel coronavirus inhibitor both in vitro and in mice, but the mechanism of action remains elusive. In this study, we independently discovered SFN for its inhibitory effect against SARS-CoV-2 using a target-based screening approach, identifying the viral 3-chymotrypsin-like protease (3CLpro ) as a target of SFN. Mechanistically, SFN inhibits 3CLpro in a reversible, mixed-type manner. Moreover, enzymatic kinetics studies reveal that SFN is a slow-binding inhibitor, following a two-step interaction. Initially, an encounter complex forms by specific binding of SFN to the active pocket of 3CLpro ; subsequently, the isothiocyanate group of SFN as "warhead" reacts covalently to the catalytic cysteine in a slower velocity, stabilizing the SFN-3CLpro complex. Our study has identified a new lead of the covalent 3CLpro inhibitors which has potential to be developed as a therapeutic agent to treat SARS-CoV-2 infection.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Camundongos , Quimases , Inibidores de Proteases/farmacologia , Inibidores de Proteases/uso terapêutico , Isotiocianatos/farmacologia , Antivirais/uso terapêutico
11.
Histopathology ; 82(3): 407-419, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36366933

RESUMO

AIMS: Lung tissue from COVID-19 patients shares similar histomorphological features with chronic lung allograft disease, also suggesting activation of autoimmune-related pathways in COVID-19. To more clearly understand the underlying spectrum of pathophysiology in COVID-19 pneumonia, we analysed mRNA expression of autoimmune-related genes in post-mortem lung tissue from COVID-19 patients. METHODS AND RESULTS: Formalin-fixed, paraffin-embedded lung tissue samples of 18 COVID-19 patients and eight influenza patients were used for targeted gene expression profiling using NanoString technology. Multiplex immunofluorescence for tryptase and chymase was applied for validation. Genes related to mast cells were significantly increased in COVID-19. This finding was strengthened by multiplex immunofluorescence also showing a significant increase of tryptase- and chymase-positive cells in COVID-19. Furthermore, receptors for advanced glycation end-products (RAGE) and pro-platelet basic protein (PPBP) were up-regulated in COVID-19 compared to influenza. Genes associated with Type I interferon signalling showed a significant correlation to detected SARS-CoV2 pathway-related genes. The comparison of lung tissue samples from both groups based on the presence of histomorphological features indicative of acute respiratory distress syndrome did not result in finding any specific gene or pathways. CONCLUSION: Two separate means of measuring show a significant increase of mast cells in SARS-CoV-2-infected lung tissue compared to influenza. Additionally, several genes involved in fibrosis and thrombosis, among which are RAGE and PPBP, are up-regulated in COVID-19. As mast cells are able to induce thrombosis and fibrosis, they may play an important role in the pathogenesis of COVID-19.


Assuntos
COVID-19 , Influenza Humana , Mastócitos , Fibrose Pulmonar , Trombose , Humanos , Quimases , COVID-19/complicações , COVID-19/patologia , Fibrose , Influenza Humana/patologia , Mastócitos/patologia , Fibrose Pulmonar/etiologia , Fibrose Pulmonar/patologia , RNA Viral , SARS-CoV-2 , Trombose/etiologia , Trombose/patologia , Triptases
12.
Pancreatology ; 23(8): 957-963, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37949771

RESUMO

BACKGROUND: Genetic predisposition is crucial in the pathogenesis of early-onset chronic pancreatitis (CP). So far, several genetic alterations have been identified as risk factors, predominantly in genes encoding digestive enzymes. However, many early-onset CP cases have no identified underlying cause. Chymotrypsins are a family of serine proteases that can cleave trypsinogen and lead to its degradation. Because genetic alterations in the chymotrypsins CTRC, CTRB1, and CTRB2 are associated with CP, we genetically and functionally investigated chymotrypsin-like protease (CTRL) as a potential risk factor. METHODS: We screened 1005 non-alcoholic CP patients and 1594 controls for CTRL variants by exome sequencing. We performed Western blots and activity assays to analyse secretion and proteolytic activity. We measured BiP mRNA expression to investigate the potential impact of identified alterations on endoplasmic reticulum (ER) stress. RESULTS: We identified 13 heterozygous non-synonymous CTRL variants: five exclusively in patients and three only in controls. Functionality was unchanged in 6/13 variants. Four alterations showed normal secretion but reduced (p.G20S, p.G56S, p.G61S) or abolished (p.S208F) activity. Another three variants (p.C201Y, p.G215R and p.C220G) were not secreted and already showed reduced or no activity intracellularly. However, intracellular retention did not lead to ER stress. CONCLUSION: We identified several CTRL variants, some showing potent effects on protease function and secretion. We observed these effects in variants found in patients and controls, and CTRL loss-of-function variants were not significantly more common in patients than controls. Therefore, CTRL is unlikely to play a relevant role in the development of CP.


Assuntos
Quimases , Pancreatite Crônica , Humanos , Quimases/genética , Predisposição Genética para Doença , Mutação , Pancreatite Crônica/genética , Pancreatite Crônica/metabolismo , Fatores de Risco
13.
Pancreatology ; 23(6): 742-749, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37604733

RESUMO

Chymotrypsin-like protease (CTRL) is one of the four chymotrypsin isoforms expressed in the human exocrine pancreas. Human genetic and experimental evidence indicate that chymotrypsins B1, B2, and C (CTRB1, CTRB2 and CTRC) are important not only for protein digestion but also for protecting the pancreas against pancreatitis by degrading potentially harmful trypsinogen. CTRL has not been reported to play a similar role, possibly due to its low abundance and/or different substrate specificity. To address this problem, we investigated the specificity of the substrate-binding groove of CTRL by evolving the substrate-like canonical loop of the Schistocerca gregaria proteinase inhibitor 2 (SGPI-2), a small-protein reversible chymotrypsin inhibitor to bind CTRL. We found that phage-associated SGPI-2 variants with strong affinity to CTRL were similar to those evolved previously against CTRB1, CTRB2 or bovine chymotrypsin A (bCTRA), indicating comparable substrate specificity. When tested as recombinant proteins, SGPI-2 variants inhibited CTRL with similar or slightly weaker affinity than bCTRA, confirming that CTRL is a typical chymotrypsin. Interestingly, an SGPI-2 variant selected with a Thr29His mutation in its reactive loop was found to inhibit CTRL strongly, but it was digested rapidly by bCTRA. Finally, CTRL was shown to degrade human anionic trypsinogen, however, at a much slower rate than CTRB2, suggesting that CTRL may not have a significant role in the pancreatic defense mechanisms against inappropriate trypsinogen activation and pancreatitis.


Assuntos
Quimases , Quimotripsina , Inibidores de Proteases , Animais , Bovinos , Humanos , Quimases/antagonistas & inibidores , Quimases/química , Quimotripsina/química , Pancreatite/prevenção & controle , Inibidores de Proteases/química , Inibidores de Proteases/isolamento & purificação , Inibidores de Proteases/farmacologia , Especificidade por Substrato , Tripsinogênio , Biblioteca de Peptídeos
14.
Adv Exp Med Biol ; 1423: 175-180, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37525041

RESUMO

INTRODUCTION: The intake of angiotensin-converting enzyme (ACE) inhibitors and specific antagonists of angiotensin II receptors, widely used as antihypertensive drugs, significantly reduces the risk of developing basal cell carcinoma (BCC), highlighting the possible tumorigenic role of angiotensin II (AngII). We present here the investigated genetic association between the development of BCC and functional DNA polymorphisms M235T, I/D, and A1903G in the genes of angiotensinogen (AGT), angiotensin-converting enzyme (ACE), and chymase (CMA1), which mediate AngII production levels. METHODS: DNA samples of 203 unrelated Greeks were studied, including 100 patients with BCC and 103 matched healthy controls. RESULTS: The MT genotype of the AGT-M235T polymorphism was significantly more prevalent in the patient group (78.0%) versus the healthy control group (28.3%; p < 0.001). The DD genotype of the ACE-I/D polymorphism was also increased in BCC patients (72.8%) compared to controls (46.2%; p = 0.001). The heterozygous AG genotype of CMA1-A1903G was significantly more frequent in the BCC group (86%) than in the healthy controls (50.5%; p < 0.001). CONCLUSIONS: The MT, DD, and AG genotypes of the AGT- M235T, ACE-I/D, and CMA1-A1903G polymorphisms, respectively, were significantly increased in frequency within the group of cancer patients compared to the healthy controls. All three genotypes correspond to increased enzyme levels or activity and result in increased levels of AngII; therefore, they may be potentially utilized as reliable biomarkers associated with an individual's increased risk for BCC development.


Assuntos
Carcinoma Basocelular , Neoplasias Cutâneas , Humanos , Angiotensinogênio/genética , Quimases/genética , Angiotensina II/genética , Polimorfismo Genético , Peptidil Dipeptidase A/genética , Genótipo , Carcinoma Basocelular/genética , Serina Proteases/genética , Neoplasias Cutâneas/genética , Biomarcadores , DNA , Sistema Renina-Angiotensina
15.
Immunopharmacol Immunotoxicol ; 45(4): 409-418, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36537314

RESUMO

CONTEXT: Inflammatory bowel disease (IBD) is a chronic gut disease with intestinal-epithelium disruption. Mast cell (MC) has been discussed in IBD studies, but its subset MCTC (chymase/tryptase) and MC-chymase have not been well-explored extensively. Human-milk-oligosaccharide-Disialyllacto-N-Tetraose (DSLNT) was reported as an effective strategy to protect infants against IBD with unclear mechanism. OBJECTIVE: This study was to examine the distribution of chymase-positive mast cells in the intestinal-epithelium-tissue of IBD infants, to explore the MC-chymase function on intestinal-epithelium, and to investigate the influences of DSLNT against MC-chymase-induced disruptions. MATERIALS AND METHODS: The intestinal-biopsies (surgical-waste) of the infants with IBD or with intestinal-atresia (non-IBD) were paraffin-embedded for immunohistochemistry. In-situ intestinal-tissue model and in-vitro human-intestinal-epithelial-cell (Caco-2) model were established with or without the treatments of MC-chymase (50mU/mL), DSLNT (600 µM) and DSLNT + MC-chymase respectively. The tissue morphology analysis, cell proliferation assay, cell-gap-closure assessment, fluorescence-immunocytochemistry, western blot, trans-epithelial-electrical-resistance, cell-cycle and statistical analysis were applied. RESULTS: There was an increased number of MCTC subset around the inflamed intestinal area in-vivo; MC-chymase caused intestinal-epithelial-barrier damage in-situ, decreased trans-epithelial-electrical-resistance of caco-2 cell monolayer in-vitro; while DSLNT protected epithelium against MC-chymase induced disruptions. MC-chymase reduced cell-viability, proliferation and migration, altered cell-cycle, down-regulated ZO-1, FAK, and P38 expressions, while DSLNT protected cells by impairing MC-chymase-induced interruptions. DSLNT can rescue ZO-1, FAK and P38 expressions and restore epithelial-cell integrity and cell cycle. CONCLUSIONS: Chymase-positive MCs are involved in IBD progress. MC-chymase disrupts intracellular ZO-1/FAK/P38 signal pathway and cell-cell/cell-matrix contacts, while DSLNT protects intestinal-epithelium against MC-chymase to maintain the intestinal epithelium integrity.


Assuntos
Doenças Inflamatórias Intestinais , Mastócitos , Lactente , Humanos , Quimases/metabolismo , Mastócitos/metabolismo , Células CACO-2 , Leite Humano/metabolismo , Células Epiteliais/metabolismo , Oligossacarídeos/farmacologia , Oligossacarídeos/metabolismo , Mucosa Intestinal , Doenças Inflamatórias Intestinais/patologia , Permeabilidade
16.
J Dairy Res ; 90(4): 387-392, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38186214

RESUMO

This research paper addresses the hypothesis that mast cells (MCs) contribute to the formation of mammary fibrosis. MCs are important immune regulatory and immune modulatory cells that play major roles in the inflammatory process. Since there is no detailed knowledge, this research study aimed to comparatively investigate the presence, localization, and immunophenotypes of MCs in healthy and mastitic mammary tissues. A total of 264 mammary samples were evaluated for the examination of mast cells and fibrosis. The mean mast cell number in both acute and chronic mastitis samples were very significantly higher than the control group P < 0.001). A 7.9-fold increase in the number of mast cells was found when the chronic mastitis group was compared with the control (healthy) group. Immunohistochemistry revealed presence of all three immune phenotypes in control and mastitic mammary samples (tryptase + (MCT), chymase + (MCC) and both chymase and tryptase + (MCTC). The mean MCT, MCC, and MCTC numbers in the chronic mastitis group were found to be significantly higher than the control (P < 0.001 for all three phenotypes) but did not differ significantly between control and acute mastitis samples. When the mean numbers of MCT, MCC, and MCTC in the control group and chronic mastitis group were compared, a 10.5, 7.8, and a 4.1-fold increase was observed, respectively. The amount of connective tissue was strongly increased in tissues with chronic mastitis and a 3.01-fold increase was detected compared to the control group. A statistically significant relation was also found between the amount of fibrosis and the increased number of total MCs (P < 0.001).


Assuntos
Doenças dos Bovinos , Mastite , Feminino , Animais , Bovinos , Quimases , Mastócitos/patologia , Triptases , Fenótipo , Mastite/veterinária , Mastite/patologia , Fibrose , Doenças dos Bovinos/patologia
17.
J Allergy Clin Immunol ; 149(6): 2053-2061.e6, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35240143

RESUMO

BACKGROUND: Thymic stromal lymphopoietin (TSLP) promotes TH2 inflammation and is deeply intertwined with inflammatory dermatoses like atopic dermatitis. The mechanisms regulating TSLP are poorly defined. OBJECTIVE: We investigated whether and by what mechanisms mast cells (MCs) foster TSLP responses in the cutaneous environment. METHODS: Ex vivo and in vivo skin MC degranulation was induced by compound 48/80 in wild-type protease-activated receptor 2 (PAR-2)- and MC-deficient mice in the presence or absence of neutralizing antibodies, antagonists, or exogenous mouse MC protease 6 (mMCP6). Primary human keratinocytes and murine skin explants were stimulated with lysates/supernatants of human skin MCs, purified tryptase, or MC lysate diminished of tryptase. Chymase and histamine were also used. TSLP was quantified by ELISA, real-time quantitative PCR, and immunofluorescence staining. RESULTS: Mas-related G protein-coupled receptor X2 (Mrgprb2) activation elicited TSLP in intact skin, mainly in the epidermis. Responses were strictly MC dependent and relied on PAR-2. Complementarily, TSLP was elicited by tryptase in murine skin explants. Exogenous mMCP6 could fully restore responsiveness in MC-deficient murine skin explants. Conversely, PAR-2 knockout mice were unresponsive to mMCP6 while displaying increased responsiveness to other inflammatory pathways, such as IL-1α. Indeed, IL-1α acted in concert with tryptase. In primary human keratinocytes, MC-elicited TSLP generation was likewise abolished by tryptase inhibition or elimination. Chymase and histamine did not affect TSLP production, but histamine triggered IL-6, IL-8, and stem cell factor. CONCLUSION: MCs communicate with kerationocytes more broadly than hitherto suspected. The tryptase/PAR-2 axis is a crucial component of this cross talk, underlying MC-dependent stimulation of TSLP in neighboring kerationocytes. Interference specifically with MC tryptase may offer a treatment option for disorders initiated or perpetuated by aberrant TSLP, such as atopic dermatitis.


Assuntos
Dermatite Atópica , Receptor PAR-2 , Animais , Quimases/metabolismo , Citocinas/metabolismo , Histamina/metabolismo , Humanos , Queratinócitos/metabolismo , Mastócitos/metabolismo , Camundongos , Receptor PAR-2/genética , Receptor PAR-2/metabolismo , Triptases/metabolismo , Linfopoietina do Estroma do Timo
18.
J Allergy Clin Immunol ; 149(2): 718-727, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34331992

RESUMO

BACKGROUND: Mast cells (MCs) have a profound impact on allergic asthma. Under such conditions, MCs undergo degranulation, resulting in the release of exceptionally large amounts of MC-restricted proteases. However, the role of these proteases in asthma is only partially understood. OBJECTIVES: We sought to test our hypothesis that MC proteases can influence the functionality of human lung fibroblasts (HLFs). METHODS: Primary HLFs were treated with MC chymase or tryptase, followed by assessment of parameters related to fibroblast function. RESULTS: HLFs underwent major morphologic changes in response to chymase, showing signs of cellular contraction, but were refractory to tryptase. However, no effects of chymase on HLF viability or proliferation were seen. Chymase, but not tryptase, had a major impact on the output of extracellular matrix-associated compounds from the HLFs, including degradation of fibronectin and collagen-1, and activation of pro-matrix metalloprotease 2. Further, chymase induced the release of various chemotactic factors from HLFs. In line with this, conditioned medium from chymase-treated HLFs showed chemotactic activity on neutrophils. Transcriptome analysis revealed that chymase induced a proinflammatory gene transcription profile in HLFs, whereas tryptase had minimal effects. CONCLUSIONS: Chymase, but not tryptase, has a major impact on the phenotype of primary airway fibroblasts by modifying their output of extracellular matrix components and by inducing a proinflammatory phenotype.


Assuntos
Asma/etiologia , Quimases/toxicidade , Fibroblastos/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Mastócitos/enzimologia , Apoptose/efeitos dos fármacos , Células Cultivadas , Colágeno Tipo I/metabolismo , Fibroblastos/metabolismo , Fibroblastos/patologia , Humanos , Pulmão/metabolismo , Pulmão/patologia , Mastócitos/fisiologia , Transcriptoma , Triptases/toxicidade
19.
Int J Mol Sci ; 24(7)2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-37047472

RESUMO

The mechanisms of ovarian endometrioid cyst formation, or cystic ovarian endometriosis, still remain to be elucidated. To address this issue, we analyzed the involvement of mast cell (MC) tryptase and carboxypeptidase A3 (CPA3) in the development of endometriomas. It was found that the formation of endometrioid cysts was accompanied by an increased MC population in the ovarian medulla, as well as by an MC appearance in the cortical substance. The formation of MC subpopulations was associated with endometrioma wall structures. An active, targeted secretion of tryptase and CPA3 to the epithelium of endometrioid cysts, immunocompetent cells, and the cells of the cytogenic ovarian stroma was detected. The identification of specific proteases in the cell nuclei of the ovarian local tissue microenvironment suggests new mechanisms for the regulatory effects of MCs. The cytoplasmic outgrowths of MCs propagate in the structures of the stroma over a considerable distance; they offer new potentials for MC effects on the structures of the ovarian-specific tissue microenvironment under pathological conditions. Our findings indicate the potential roles of MC tryptase and CPA3 in the development of ovarian endometriomas and infer new perspectives on their uses as pharmacological targets in personalized medicine.


Assuntos
Cistos , Endometriose , Humanos , Feminino , Triptases , Mastócitos , Carboxipeptidases , Quimases , Microambiente Tumoral
20.
Int J Mol Sci ; 24(17)2023 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-37686410

RESUMO

Mast cell (MC)-specific proteases are of particular interest for space biology and medicine due to their biological activity in regulating targets of a specific tissue microenvironment. MC tryptase and chymase obtain the ability to remodel connective tissue through direct and indirect mechanisms. Yet, MC-specific protease expression under space flight conditions has not been adequately investigated. Using immunohistochemical stainings, we analyzed in this study the protease profile of the jejunal, gastric, and hepatic MC populations in three groups of Mongolian gerbils-vivarium control, synchronous experiment, and 12-day orbital flight on the Foton-M3 spacecraft-and in two groups-vivarium control and anti-orthostatic suspension-included in the experiment simulating effects of weightlessness in the ground-based conditions. After a space flight, there was a decreased number of MCs in the studied organs combined with an increased proportion of chymase-positive MCs and MCs with a simultaneous content of tryptase and chymase; the secretion of specific proteases into the extracellular matrix increased. These changes in the expression of proteases were observed both in the mucosal and connective tissue MC subpopulations of the stomach and jejunum. Notably, the relative content of tryptase-positive MCs in the studied organs of the digestive system decreased. Space flight conditions simulated in the synchronous experiment caused no similar significant changes in the protease profile of MC populations. The space flight conditions resulted in an increased chymase expression combined with a decreased total number of protease-positive MCs, apparently due to participating in the processes of extracellular matrix remodeling and regulating the state of the cardiovascular system.


Assuntos
Voo Espacial , Ausência de Peso , Animais , Quimases , Gerbillinae , Mastócitos , Triptases , Endopeptidases , Serina Proteases , Estômago
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa