RESUMO
Proliferating cells known as neoblasts include pluripotent stem cells (PSCs) that sustain tissue homeostasis and regeneration of lost body parts in planarians. However, the lack of markers to prospectively identify and isolate these adult PSCs has significantly hampered their characterization. We used single-cell RNA sequencing (scRNA-seq) and single-cell transplantation to address this long-standing issue. Large-scale scRNA-seq of sorted neoblasts unveiled a novel subtype of neoblast (Nb2) characterized by high levels of PIWI-1 mRNA and protein and marked by a conserved cell-surface protein-coding gene, tetraspanin 1 (tspan-1). tspan-1-positive cells survived sub-lethal irradiation, underwent clonal expansion to repopulate whole animals, and when purified with an anti-TSPAN-1 antibody, rescued the viability of lethally irradiated animals after single-cell transplantation. The first prospective isolation of an adult PSC bridges a conceptual dichotomy between functionally and molecularly defined neoblasts, shedding light on mechanisms governing in vivo pluripotency and a source of regeneration in animals. VIDEO ABSTRACT.
Assuntos
Proteínas Argonautas/metabolismo , Proteínas de Helminto/metabolismo , Planárias/fisiologia , Tetraspaninas/metabolismo , Animais , Proteínas Argonautas/antagonistas & inibidores , Proteínas Argonautas/genética , Ciclo Celular/efeitos da radiação , Regulação da Expressão Gênica , Proteínas de Helminto/antagonistas & inibidores , Proteínas de Helminto/genética , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Células-Tronco Pluripotentes/transplante , Análise de Componente Principal , Interferência de RNA , RNA de Cadeia Dupla/metabolismo , RNA de Helmintos/química , RNA de Helmintos/isolamento & purificação , RNA de Helmintos/metabolismo , Regeneração/genética , Análise de Sequência de RNA , Análise de Célula Única , Tetraspaninas/genética , Irradiação Corporal TotalRESUMO
The RNA-binding protein (RBP) LIN41, also known as LIN-41 or TRIM71, is a key regulator of animal development, but its physiological targets and molecular mechanism of action are largely elusive. Here we find that this RBP has two distinct mRNA-silencing activities. Using genome-wide ribosome profiling, RNA immunoprecipitation, and in vitro-binding experiments, we identify four mRNAs, each encoding a transcription factor or cofactor, as direct physiological targets of C. elegans LIN41. LIN41 silences three of these targets through their 3' UTRs, but it achieves isoform-specific silencing of one target, lin-29A, through its unique 5' UTR. Whereas the 3' UTR targets mab-10, mab-3, and dmd-3 undergo transcript degradation, lin-29A experiences translational repression. Through binding site transplantation experiments, we demonstrate that it is the location of the LIN41-binding site that specifies the silencing mechanism. Such position-dependent dual activity may, when studied more systematically, emerge as a feature shared by other RBPs.
Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , RNA Mensageiro/química , RNA Mensageiro/metabolismo , Fatores de Transcrição/metabolismo , Regiões 3' não Traduzidas , Regiões 5' não Traduzidas , Animais , Sítios de Ligação , Interferência de RNA , Estabilidade de RNA , RNA de Helmintos/química , RNA de Helmintos/metabolismoRESUMO
Nuage are RNA-rich condensates that assemble around the nuclei of developing germ cells. Many proteins required for the biogenesis and function of silencing small RNAs (sRNAs) enrich in nuage, and it is often assumed that nuage is the cellular site where sRNAs are synthesized and encounter target transcripts for silencing. Using C. elegans as a model, we examine the complex multicondensate architecture of nuage and review evidence for compartmentalization of silencing pathways. We consider the possibility that nuage condensates balance the activity of competing sRNA pathways and serve to limit, rather than enhance, sRNA amplification to protect transcripts from dangerous runaway silencing.
Assuntos
Condensados Biomoleculares/química , Proteínas de Caenorhabditis elegans/química , Caenorhabditis elegans/química , Interferência de RNA , RNA de Helmintos/química , RNA Interferente Pequeno/química , Animais , Proteínas Argonautas/química , Proteínas Argonautas/metabolismo , Condensados Biomoleculares/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Compartimento Celular , Núcleo Celular/metabolismo , Núcleo Celular/ultraestrutura , Embrião não Mamífero , Grânulos de Ribonucleoproteínas de Células Germinativas/metabolismo , Grânulos de Ribonucleoproteínas de Células Germinativas/ultraestrutura , Células Germinativas/metabolismo , Células Germinativas/ultraestrutura , RNA de Helmintos/metabolismo , RNA Interferente Pequeno/metabolismoRESUMO
tRNA-derived fragments (tRFs) have recently gained a lot of scientific interest due to their diverse regulatory roles in several cellular processes. However, their function in dynamic biological processes such as development and regeneration remains unexplored. Here, we show that tRFs are dynamically expressed during planarian regeneration, suggesting a possible role for these small RNAs in the regulation of regeneration. In order to characterize planarian tRFs, we first annotated 457 tRNAs in S. mediterranea combining two tRNA prediction algorithms. Annotation of tRNAs facilitated the identification of three main species of tRFs in planarians-the shorter tRF-5s and itRFs, and the abundantly expressed 5'-tsRNAs. Spatial profiling of tRFs in sequential transverse sections of planarians revealed diverse expression patterns of these small RNAs, including those that are enriched in the head and pharyngeal regions. Expression analysis of these tRF species revealed dynamic expression of these small RNAs over the course of regeneration suggesting an important role in planarian anterior and posterior regeneration. Finally, we show that 5'-tsRNA in planaria interact with all three SMEDWI proteins and an involvement of AGO1 in the processing of itRFs. In summary, our findings implicate a novel role for tRFs in planarian regeneration, highlighting their importance in regulating complex systemic processes. Our study adds to the catalog of posttranscriptional regulatory systems in planaria, providing valuable insights on the biogenesis and the function of tRFs in neoblasts and planarian regeneration.
Assuntos
Proteínas Argonautas/genética , Proteínas de Helminto/genética , Planárias/genética , RNA de Helmintos/genética , Pequeno RNA não Traduzido/genética , RNA de Transferência/genética , Regeneração/genética , Algoritmos , Animais , Proteínas Argonautas/metabolismo , Pareamento de Bases , Sequência de Bases , Regulação da Expressão Gênica , Proteínas de Helminto/metabolismo , Anotação de Sequência Molecular , Conformação de Ácido Nucleico , Planárias/metabolismo , RNA de Helmintos/química , RNA de Helmintos/classificação , RNA de Helmintos/metabolismo , Pequeno RNA não Traduzido/química , Pequeno RNA não Traduzido/classificação , Pequeno RNA não Traduzido/metabolismo , RNA de Transferência/química , RNA de Transferência/classificação , RNA de Transferência/metabolismoRESUMO
In multicellular organisms, cell type diversity and fate depend on specific sets of transcript isoforms generated by post-transcriptional RNA processing. Here, we used Schmidtea mediterranea, a flatworm with extraordinary regenerative abilities and a large pool of adult stem cells, as an in vivo model to study the role of Uridyl-rich small nuclear RNAs (UsnRNAs), which participate in multiple RNA processing reactions including splicing, in stem cell regulation. We characterized the planarian UsnRNA repertoire, identified stem cell-enriched variants and obtained strong evidence for an increased rate of UsnRNA 3'-processing in stem cells compared to their differentiated counterparts. Consistently, components of the Integrator complex showed stem cell-enriched expression and their depletion by RNAi disrupted UsnRNA processing resulting in global changes of splicing patterns and reduced processing of histone mRNAs. Interestingly, loss of Integrator complex function disrupted both stem cell maintenance and regeneration of tissues. Our data show that the function of the Integrator complex in UsnRNA 3'-processing is conserved in planarians and essential for maintaining their stem cell pool. We propose that cell type-specific modulation of UsnRNA composition and maturation contributes to in vivo cell fate choices, such as stem cell self-renewal in planarians.
Assuntos
Células-Tronco Adultas/fisiologia , Planárias/genética , Planárias/fisiologia , RNA de Helmintos/genética , RNA de Helmintos/metabolismo , RNA Nuclear Pequeno/genética , RNA Nuclear Pequeno/metabolismo , Regeneração/genética , Regeneração/fisiologia , Células-Tronco Adultas/citologia , Animais , Sequência de Bases , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Autorrenovação Celular/genética , Autorrenovação Celular/fisiologia , Modelos Biológicos , Conformação de Ácido Nucleico , Planárias/citologia , Interferência de RNA , Processamento Pós-Transcricional do RNA , Splicing de RNA , RNA de Helmintos/química , Homologia de Sequência do Ácido NucleicoRESUMO
Almost 20 years after the completion of the C. elegans genome sequence, gene structure annotation is still an ongoing process with new evidence for gene variants still being regularly uncovered by additional in-depth transcriptome studies. While alternative splice forms can allow a single gene to encode several functional isoforms, the question of how much spurious splicing is tolerated is still heavily debated. Here we gathered a compendium of 1682 publicly available C. elegans RNA-seq data sets to increase the dynamic range of detection of RNA isoforms, and obtained robust measurements of the relative abundance of each splicing event. While most of the splicing reads come from reproducibly detected splicing events, a large fraction of purported junctions is only supported by a very low number of reads. We devised an automated curation method that takes into account the expression level of each gene to discriminate robust splicing events from potential biological noise. We found that rarely used splice sites disproportionately come from highly expressed genes and are significantly less conserved in other nematode genomes than splice sites with a higher usage frequency. Our increased detection power confirmed trans-splicing for at least 84% of C. elegans protein coding genes. The genes for which trans-splicing was not observed are overwhelmingly low expression genes, suggesting that the mechanism is pervasive but not fully captured by organism-wide RNA-seq. We generated annotated gene models including quantitative exon usage information for the entire C. elegans genome. This allows users to visualize at a glance the relative expression of each isoform for their gene of interest.
Assuntos
Caenorhabditis elegans/genética , Éxons , Splicing de RNA , RNA de Helmintos , Animais , Conjuntos de Dados como Assunto , Genoma , Anotação de Sequência Molecular , Conformação de Ácido Nucleico , RNA de Helmintos/químicaRESUMO
As adapter molecules to convert the nucleic acid information into the amino acid sequence, tRNAs play a central role in protein synthesis. To fulfill this function in a reliable way, tRNAs exhibit highly conserved structural features common in all organisms and in all cellular compartments active in translation. However, in mitochondria of metazoans, certain dramatic deviations from the consensus tRNA structure are described, where some tRNAs lack the D- or T-arm without losing their function. In Enoplea, this miniaturization comes to an extreme, and functional mitochondrial tRNAs can lack both arms, leading to a considerable size reduction. Here, we investigate the secondary and tertiary structure of two such armless tRNAs from Romanomermis culicivorax. Despite their high AU content, the transcripts fold into a single and surprisingly stable hairpin structure, deviating from standard tRNAs. The three-dimensional form is boomerang-like and diverges from the standard L-shape. These results indicate that such unconventional miniaturized tRNAs can still fold into a tRNA-like shape, although their length and secondary structure are very unusual. They highlight the remarkable flexibility of the protein synthesis apparatus and suggest that the translational machinery of Enoplea mitochondria may show compensatory adaptations to accommodate these armless tRNAs for efficient translation.
Assuntos
Mermithoidea/genética , Conformação de Ácido Nucleico , RNA de Transferência/química , RNA de Transferência/genética , Animais , Sequência de Bases , Ressonância Magnética Nuclear Biomolecular , RNA de Helmintos/química , RNA de Helmintos/genética , RNA de Helmintos/isolamento & purificação , RNA de Transferência/isolamento & purificação , Espalhamento a Baixo Ângulo , Difração de Raios XRESUMO
The aims of the study are to enrich the partial 28S rDNA dataset for hymenolepidids by adding new sequences for species parasitic in the genera Sorex, Neomys and Crocidura (Soricidae) and to propose a new hypothesis for the relationships among mammalian hymenolepidids. New sequences were obtained for Coronacanthus integrus, C. magnihamatus, C. omissus, C. vassilevi, Ditestolepis diaphana, Lineolepis scutigera, Spasskylepis ovaluteri, Staphylocystis tiara, S. furcata, S. uncinata, Vaucherilepis trichophorus and Neoskrjabinolepis sp. The phylogenetic analysis (based on 56 taxa) confirmed the major clades identified by Haukisalmi et al. (Zool Scr 39:631-641, 2010) based on analysis of 31 species: Ditestolepis clade, Hymenolepis clade, Rodentolepis clade and Arostrilepis clade; however, the support was weak for the early divergent lineages of the tree and for the Arostrilepis clade. Novelties revealed include the molecular evidence for the monophyly of Coronacanthus, the non-monophyletic status of Staphylocystis and the polyphyly of Staphylocystoides. The analysis has confirmed the monophyly of Hymenolepis, the monophyly of hymenolepidids from glirids, the position of Pararodentolepis and Nomadolepis as sister taxa, the polyphyly of Rodentolepis, the position of Neoskrjabinolepis and Lineolepis as sister taxa, and the close relationship among the genera with the entire reduction of rostellar apparatus. Resolved monophyletic groups are supported by the structure of the rostellar apparatus. The diversification of the Ditestolepis clade is associated with soricids. The composition of the other major clades suggests multiple evolutionary events of host switching, including between different host orders. The life cycles of Coronacanthus and Vaucherilepis are recognised as secondarily aquatic as these taxa are nested in terrestrial groups.
Assuntos
Cestoides/classificação , Infecções por Cestoides/veterinária , Filogenia , Musaranhos/parasitologia , Animais , Cestoides/genética , Cestoides/isolamento & purificação , Infecções por Cestoides/parasitologia , DNA Ribossômico/química , DNA Ribossômico/genética , RNA de Helmintos/química , RNA de Helmintos/genética , RNA Ribossômico 28S/genética , Análise de Sequência de DNA/veterináriaRESUMO
Schistosomiasis is a major parasitic disease caused by 3 principal species of schistosome. Studies of schistosome transcriptomes have focused on protein-coding transcripts and although miRNAs are attracting increased attention, few reports have concerned the long noncoding RNAs (lncRNAs). These have been shown to play key roles in the regulation of gene expression through interactions with mRNAs, proteins and miRNAs. In this study, we first identified lncRNAs from RNA-seq data in Schistosoma mansoni and Schistosoma japonicum: 3247 and 3033 potential lncRNAs were found in these two species respectively. ChIP-seq analysis to determine H3K4me3 profiles along the gene regions corresponding to lncRNAs showed that in 12% of cases this mark was enriched in regions proximal to the transcription start sites, supporting their validity as actively transcribed genes. Besides, the sequence conservation of lncRNAs between schistosome species was much lower than that of mRNAs, but higher than that of the randomly selected genomic sequences, which is consistent with that in mammals. Our results demonstrate that lncRNAs form a significant part of the schistosome transcriptome and suggest that they play an important role in the biology of the parasite.
Assuntos
RNA Longo não Codificante/isolamento & purificação , Schistosoma japonicum/genética , Schistosoma mansoni/genética , Animais , Sequência de Bases , Sequência Conservada , Feminino , Histonas/metabolismo , Masculino , Regiões Promotoras Genéticas , RNA de Helmintos/química , Schistosoma haematobium/genética , Esquistossomose/diagnóstico , Esquistossomose/parasitologia , Esquistossomose/prevenção & controle , Alinhamento de Sequência , Transcriptoma/genéticaRESUMO
Hydatigera taeniaeformis (formerly known as Taenia taeniaeformis) is a parasitic tapeworm that has a worldwide distribution. H. taeniaeformis is naturally transmitted between mice and cats and threatens to human health, especially those who are in close contact with pets. MicroRNAs (miRNAs) are a class of small regulatory non-coding RNAs involved in the regulation of parasite growth and development, parasite infection and immunology, and host-pathogen interactions. The miRNA profile of H. taeniaeformis remains to be elucidated. Herein, 47 conserved miRNAs (grouped into 34 miRNA families) and 4 novel miRNAs were identified in H. taeniaeformis metacestodes using deep sequencing approach. Among them, hta-miR-71, -let-7, and-miR-87 was absolutely predominant in H. taeniaeformis metacestodes. Moreover, comparative analysis revealed the presence of miR-71/2 and miR-4989/277 clusters in H. taeniaeformis. Nucleotide bias analysis of identified miRNAs showed that the adenine (A) was the dominant nucleotide at the beginning of the miRNAs, particularly at the positions of third and 7th nucleotides. The study provides rich data for further understandings of H. taeniaeformis biology.
Assuntos
MicroRNAs/química , MicroRNAs/isolamento & purificação , Taenia/genética , Animais , Sequência de Bases , Sequenciamento de Nucleotídeos em Larga Escala/veterinária , Humanos , Fígado/parasitologia , MicroRNAs/classificação , Família Multigênica , RNA de Helmintos/química , RNA de Helmintos/classificação , RNA de Helmintos/isolamento & purificação , Doenças dos Roedores/parasitologia , Roedores , Teníase/parasitologia , Teníase/veterináriaRESUMO
P granules and other RNA/protein bodies are membrane-less organelles that may assemble by intracellular phase separation, similar to the condensation of water vapor into droplets. However, the molecular driving forces and the nature of the condensed phases remain poorly understood. Here, we show that the Caenorhabditis elegans protein LAF-1, a DDX3 RNA helicase found in P granules, phase separates into P granule-like droplets in vitro. We adapt a microrheology technique to precisely measure the viscoelasticity of micrometer-sized LAF-1 droplets, revealing purely viscous properties highly tunable by salt and RNA concentration. RNA decreases viscosity and increases molecular dynamics within the droplet. Single molecule FRET assays suggest that this RNA fluidization results from highly dynamic RNA-protein interactions that emerge close to the droplet phase boundary. We demonstrate than an N-terminal, arginine/glycine rich, intrinsically disordered protein (IDP) domain of LAF-1 is necessary and sufficient for both phase separation and RNA-protein interactions. In vivo, RNAi knockdown of LAF-1 results in the dissolution of P granules in the early embryo, with an apparent submicromolar phase boundary comparable to that measured in vitro. Together, these findings demonstrate that LAF-1 is important for promoting P granule assembly and provide insight into the mechanism by which IDP-driven molecular interactions give rise to liquid phase organelles with tunable properties.
Assuntos
Proteínas de Caenorhabditis elegans/fisiologia , Caenorhabditis elegans/fisiologia , RNA Helicases/fisiologia , Viscosidade , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/química , RNA Helicases/química , RNA de Helmintos/químicaRESUMO
BACKGROUND: Understanding gene expression changes over lifespan in diverse animal species will lead to insights to conserved processes in the biology of aging and allow development of interventions to improve health. Rotifers are small aquatic invertebrates that have been used in aging studies for nearly 100 years and are now re-emerging as a modern model system. To provide a baseline to evaluate genetic responses to interventions that change health throughout lifespan and a framework for new hypotheses about the molecular genetic mechanisms of aging, we examined the transcriptome of an asexual female lineage of the rotifer Brachionus manjavacas at five life stages: eggs, neonates, and early-, late-, and post-reproductive adults. RESULTS: There are widespread shifts in gene expression over the lifespan of B. manjavacas; the largest change occurs between neonates and early reproductive adults and is characterized by down-regulation of developmental genes and up-regulation of genes involved in reproduction. The expression profile of post-reproductive adults was distinct from that of other life stages. While few genes were significantly differentially expressed in the late- to post-reproductive transition, gene set enrichment analysis revealed multiple down-regulated pathways in metabolism, maintenance and repair, and proteostasis, united by genes involved in mitochondrial function and oxidative phosphorylation. CONCLUSIONS: This study provides the first examination of changes in gene expression over lifespan in rotifers. We detected differential expression of many genes with human orthologs that are absent in Drosophila and C. elegans, highlighting the potential of the rotifer model in aging studies. Our findings suggest that small but coordinated changes in expression of many genes in pathways that integrate diverse functions drive the aging process. The observation of simultaneous declines in expression of genes in multiple pathways may have consequences for health and longevity not detected by single- or multi-gene knockdown in otherwise healthy animals. Investigation of subtle but genome-wide change in these pathways during aging is an important area for future study.
Assuntos
Envelhecimento/genética , Genoma Helmíntico , Rotíferos/genética , Animais , Regulação para Baixo , Perfilação da Expressão Gênica , Proteínas de Helminto/genética , Proteínas de Helminto/metabolismo , Estágios do Ciclo de Vida/genética , Modelos Animais , Óvulo/metabolismo , RNA de Helmintos/química , RNA de Helmintos/isolamento & purificação , RNA de Helmintos/metabolismo , Rotíferos/crescimento & desenvolvimento , Análise de Sequência de RNA , Transdução de Sinais/genética , Transcriptoma , Regulação para CimaRESUMO
RNA molecules of all types fold into complex secondary and tertiary structures that are important for their function and regulation. Structural and catalytic RNAs such as ribosomal RNA (rRNA) and transfer RNA (tRNA) are central players in protein synthesis, and only function through their proper folding into intricate three-dimensional structures. Studies of messenger RNA (mRNA) regulation have also revealed that structural elements embedded within these RNA species are important for the proper regulation of their total level in the transcriptome. More recently, the discovery of microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) has shed light on the importance of RNA structure to genome, transcriptome, and proteome regulation. Due to the relatively small number, high conservation, and importance of structural and catalytic RNAs to all life, much early work in RNA structure analysis mapped out a detailed view of these molecules. Computational and physical methods were used in concert with enzymatic and chemical structure probing to create high-resolution models of these fundamental biological molecules. However, the recent expansion in our knowledge of the importance of RNA structure to coding and regulatory RNAs has left the field in need of faster and scalable methods for high-throughput structural analysis. To address this, nuclease and chemical RNA structure probing methodologies have been adapted for genome-wide analysis. These methods have been deployed to globally characterize thousands of RNA structures in a single experiment. Here, we review these experimental methodologies for high-throughput RNA structure determination and discuss the insights gained from each approach.
Assuntos
Conformação de Ácido Nucleico , RNA/química , Análise de Sequência de RNA/métodos , Animais , Arabidopsis/genética , Pareamento de Bases , Caenorhabditis elegans/genética , Biologia Computacional/métodos , Drosophila melanogaster/genética , Células-Tronco Embrionárias/química , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Camundongos , RNA/biossíntese , RNA/genética , Dobramento de RNA , RNA Fúngico/genética , RNA de Helmintos/química , Ribonucleases/metabolismo , Especificidade por SubstratoRESUMO
In this study, we investigated global changes in miRNAs of Meloidogyne incognita throughout its life cycle. Small RNA sequencing resulted in approximately 62, 38, 38, 35, and 39 Mb reads in the egg, J2, J3, J4, and female stages, respectively. Overall, we identified 2724 known and 383 novel miRNAs (read count > 10) from all stages, of which 169 known and 13 novel miRNA were common to all the five stages. Among the stage-specific miRNAs, miR-286 was highly expressed in eggs, miR-2401 in J2, miR-8 and miR-187 in J3, miR-6736 in J4, and miR-17 in the female stages. These miRNAs are reported to be involved in embryo and neural development, muscular function, and control of apoptosis. Cluster analysis indicated the presence of 91 miRNA clusters, of which 36 clusters were novel and identified in this study. Comparison of miRNA families with other nematodes showed 17 families to be commonly absent in animal parasitic nematodes and M. incognita. Validation of 43 predicted common and stage-specific miRNA by quantitative PCR (qPCR) indicated their expression in the nematode. Stage-wise exploration of M. incognita miRNAs has not been carried out before and this work presents information on common and stage-specific miRNAs of the root-knot nematode.
Assuntos
Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica no Desenvolvimento , Estágios do Ciclo de Vida/genética , MicroRNAs/genética , RNA de Helmintos/genética , Tylenchoidea/genética , Animais , Sequência de Bases , Análise por Conglomerados , Feminino , MicroRNAs/química , MicroRNAs/classificação , Modelos Moleculares , Conformação de Ácido Nucleico , Óvulo/crescimento & desenvolvimento , Óvulo/metabolismo , RNA de Helmintos/química , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência do Ácido Nucleico , Tylenchoidea/crescimento & desenvolvimentoRESUMO
The hammerhead ribozyme is a self-cleaving RNA broadly dispersed across all kingdoms of life. Although it was the first of the small, nucleolytic ribozymes discovered, the mechanism by which it catalyzes its reaction remains elusive. The nucleobase of G12 is well positioned to be a general base, but it is unclear if or how this guanine base becomes activated for proton transfer. Metal ions have been implicated in the chemical mechanism, but no interactions between divalent metal ions and the cleavage site have been observed crystallographically. To better understand how this ribozyme functions, we have solved crystal structures of wild-type and G12A mutant ribozymes. We observe a pH-dependent conformational change centered around G12, consistent with this nucleotide becoming deprotonated. Crystallographic and kinetic analysis of the G12A mutant reveals a Zn(2+) specificity switch suggesting a direct interaction between a divalent metal ion and the purine at position 12. The metal ion specificity switch and the pH-rate profile of the G12A mutant suggest that the minor imino tautomer of A12 serves as the general base in the mutant ribozyme. We propose a model in which the hammerhead ribozyme rearranges prior to the cleavage reaction, positioning two divalent metal ions in the process. The first metal ion, positioned near G12, becomes directly coordinated to the O6 keto oxygen, to lower the pKa of the general base and organize the active site. The second metal ion, positioned near G10.1, bridges the N7 of G10.1 and the scissile phosphate and may participate directly in the cleavage reaction.
Assuntos
Magnésio/metabolismo , Manganês/metabolismo , RNA Catalítico/metabolismo , RNA de Helmintos/metabolismo , Schistosoma mansoni/enzimologia , Zinco/metabolismo , Animais , Sequência de Bases , Sítios de Ligação , Domínio Catalítico , Cátions Bivalentes/metabolismo , Cristalografia por Raios X , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Mutação Puntual , Prótons , RNA Catalítico/química , RNA Catalítico/genética , RNA de Helmintos/química , RNA de Helmintos/genética , Schistosoma mansoni/química , Schistosoma mansoni/metabolismo , Esquistossomose mansoni/parasitologia , Especificidade por SubstratoRESUMO
Current computational analysis of microRNA interactions is based largely on primary and secondary structure analysis. Computationally efficient tertiary structure-based methods are needed to enable more realistic modeling of the molecular interactions underlying miRNA-mediated translational repression. We incorporate algorithms for predicting duplex RNA structures, ionic strength effects, duplex entropy and free energy, and docking of duplex-Argonaute protein complexes into a pipeline to model and predict miRNA-target duplex binding energies. To ensure modeling accuracy and computational efficiency, we use an all-atom description of RNA and a continuum description of ionic interactions using the Poisson-Boltzmann equation. Our method predicts the conformations of two constructs of Caenorhabditis elegans let-7 miRNA-target duplexes to an accuracy of â¼3.8 Å root mean square distance of their NMR structures. We also show that the computed duplex formation enthalpies, entropies, and free energies for eight miRNA-target duplexes agree with titration calorimetry data. Analysis of duplex-Argonaute docking shows that structural distortions arising from single-base-pair mismatches in the seed region influence the activity of the complex by destabilizing both duplex hybridization and its association with Argonaute. Collectively, these results demonstrate that tertiary structure-based modeling of miRNA interactions can reveal structural mechanisms not accessible with current secondary structure-based methods.
Assuntos
MicroRNAs/química , Conformação de Ácido Nucleico , RNA de Helmintos/química , Animais , Proteínas Argonautas/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Metabolismo Energético , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Thermus thermophilus/metabolismoRESUMO
Recent studies on microRNA (miRNA) evolution focused mainly on the comparison of miRNA complements between animal clades. However, evolution of miRNAs within such groups is poorly explored despite the availability of comparable data that in some cases lack only a few key taxa. For flatworms (Platyhelminthes), miRNA complements are available for some free-living flatworms and all major parasitic lineages, except for the Monogenea. We present the miRNA complement of the monogenean flatworm Gyrodactylus salaris that facilitates a comprehensive analysis of miRNA evolution in Platyhelminthes. Using the newly designed bioinformatics pipeline miRCandRef, the miRNA complement was disentangled from next-generation sequencing of small RNAs and genomic DNA without a priori genome assembly. It consists of 39 miRNA hairpin loci of conserved miRNA families, and 22 novel miRNAs. A comparison with the miRNA complements of Schmidtea mediterranea (Turbellaria), Schistosoma japonicum (Trematoda), and Echinococcus granulosus (Cestoda) reveals a substantial loss of conserved bilaterian, protostomian, and lophotrochozoan miRNAs. Eight of the 46 expected conserved miRNAs were lost in all flatworms, 16 in Neodermata and 24 conserved miRNAs could not be detected in the cestode and the trematode. Such a gradual loss of miRNAs has not been reported before for other animal phyla. Currently, little is known about miRNAs in Platyhelminthes, and for the majority of the lost miRNAs there is no prediction of function. As suggested earlier they might be related to morphological simplifications. The presence and absence of 153 conserved miRNAs was compared for platyhelminths and 32 other metazoan taxa. Phylogenetic analyses support the monophyly of Platyhelminthes (Turbellaria + Neodermata [Monogenea {Trematoda + Cestoda}]).
Assuntos
MicroRNAs/genética , Platelmintos/classificação , Platelmintos/genética , RNA de Helmintos/genética , Animais , Biologia Computacional , Sequência Conservada/genética , Evolução Molecular , Expressão Gênica , MicroRNAs/química , Família Multigênica , Conformação de Ácido Nucleico , Filogenia , RNA de Helmintos/química , Análise de Sequência de RNARESUMO
Infections by two blood fluke species, Cardicola orientalis and Cardicola opisthorchis, currently present the greatest disease concern for the sea-cage culture of Pacific bluefin tuna (PBT) - a species of high global economic importance and ecological concern. In this study, we aimed to rapidly, quantitatively, and differentially identify infections by these two parasite species in cultured PBT as well as identify potential host immune responses. Using real-time qPCR, we were successful in quantitatively detecting parasite-specific DNA from within host blood, gill, and heart tissues; positively identifying parasitic infections 44 days earlier than microscopy methods previously employed. Both gill and heart became heavily infected by both parasite species in PBT within two months of sea-cage culture, which was only mitigated by the administration of anthelmintic praziquantel. Nevertheless, fish were observed to mount an organ specific transcriptive immune response during infection that mirrored the relative quantity of pathogenic load. In heart, significant (3-6 fold) increases in IgM, MHC2, TCRß, and IL-8 transcription was observed in infected fish relative to uninfected controls; whereas in the gills only IgM transcription was observed to be induced (11 fold) by infection. Interestingly, the relative quantity of IgM transcription was highly correlated to the relative abundance of C. orientalis but not C. opisthorchis DNA in the gill samples, even though this organ showed high prevalence of DNA from both parasite species. Taken together, these findings indicate that although ineffective at combating infection during primary exposure, a cellular immune response is mounted in PBT as a potential rejoinder to future Cardicola exposure, particularly against C. orientalis. Although future investigation into antibody effectiveness will be needed, this work provides valuable preliminary insight into host responsiveness to Cardicola infection as well as additional support for the need of anthelmintic treatment following primary parasite exposure during PBT culture.
Assuntos
Doenças dos Peixes/parasitologia , Transcrição Gênica/imunologia , Trematódeos/imunologia , Infecções por Trematódeos/veterinária , Atum , Animais , DNA Espaçador Ribossômico/química , DNA Espaçador Ribossômico/genética , Doenças dos Peixes/sangue , Doenças dos Peixes/imunologia , Genes Codificadores da Cadeia beta de Receptores de Linfócitos T/genética , Genes Codificadores da Cadeia beta de Receptores de Linfócitos T/imunologia , Brânquias/parasitologia , Coração/parasitologia , Imunoglobulina M/genética , Imunoglobulina M/imunologia , Interleucina-8/genética , Interleucina-8/imunologia , RNA de Helmintos/química , RNA de Helmintos/genética , Reação em Cadeia da Polimerase em Tempo Real/veterinária , Estatísticas não Paramétricas , Trematódeos/genética , Infecções por Trematódeos/sangue , Infecções por Trematódeos/imunologia , Infecções por Trematódeos/parasitologiaRESUMO
The heartworm Dirofilaria immitis is an important parasite of dogs. Transmitted by mosquitoes in warmer climatic zones, it is spreading across southern Europe and the Americas at an alarming pace. There is no vaccine, and chemotherapy is prone to complications. To learn more about this parasite, we have sequenced the genomes of D. immitis and its endosymbiont Wolbachia. We predict 10,179 protein coding genes in the 84.2 Mb of the nuclear genome, and 823 genes in the 0.9-Mb Wolbachia genome. The D. immitis genome harbors neither DNA transposons nor active retrotransposons, and there is very little genetic variation between two sequenced isolates from Europe and the United States. The differential presence of anabolic pathways such as heme and nucleotide biosynthesis hints at the intricate metabolic interrelationship between the heartworm and Wolbachia. Comparing the proteome of D. immitis with other nematodes and with mammalian hosts, we identify families of potential drug targets, immune modulators, and vaccine candidates. This genome sequence will support the development of new tools against dirofilariasis and aid efforts to combat related human pathogens, the causative agents of lymphatic filariasis and river blindness.
Assuntos
Anti-Helmínticos/farmacologia , Dirofilaria immitis/genética , Dirofilariose/parasitologia , Doenças do Cão/parasitologia , Genoma Helmíntico , Vacinas/imunologia , Animais , Anti-Helmínticos/uso terapêutico , Dirofilaria immitis/efeitos dos fármacos , Dirofilaria immitis/imunologia , Dirofilaria immitis/microbiologia , Dirofilariose/tratamento farmacológico , Dirofilariose/prevenção & controle , Doenças do Cão/tratamento farmacológico , Doenças do Cão/prevenção & controle , Cães , Feminino , Variação Genética , Genoma Bacteriano , Masculino , Filogenia , Proteoma , RNA de Helmintos/química , Simbiose , Transcriptoma/genética , Wolbachia/genética , Wolbachia/fisiologiaRESUMO
Glucose-6-phosphate dehydrogenase (G6PD), a regulatory enzyme of the pentose phosphate pathway from Brugia malayi, was cloned, expressed and biochemically characterized. The Km values for glucose-6-phosphate and nicotinamide adenine dinucleotide phosphate (NADP) were 0.25 and 0.014 mm respectively. The rBmG6PD exhibited an optimum pH of 8.5 and temperature, 40 °C. Adenosine 5' [γ-thio] triphosphate (ATP-γ-S), adenosine 5' [ß,γ-imido] triphosphate (ATP-ß,γ-NH), adenosine 5' [ß-thio] diphosphate (ADP-ß-S), Na+, K+, Li+ and Cu++ ions were found to be strong inhibitors of rBmG6PD. The rBmG6PD, a tetramer with subunit molecular weight of 75 kDa contains 0.02 mol of SH group per mol of monomer. Blocking the SH group with SH-inhibitors, led to activation of rBmG6PD activity by N-ethylmaleimide. CD analysis indicated that rBmG6PD is composed of 37% α-helices and 26% ß-sheets. The unfolding equilibrium of rBmG6PD with GdmCl/urea showed the triphasic unfolding pattern along with the highly stable intermediate obtained by GdmCl.