Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.004
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Neurophysiol ; 131(5): 815-821, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38505867

RESUMO

On demand and localized treatment for excessive muscle tone after spinal cord injury (SCI) is currently not available. Here, we examine the reduction in leg hypertonus in a person with mid-thoracic, motor complete SCI using a commercial transcutaneous electrical stimulator (TES) applied at 50 or 150 Hz to the lower back and the possible mechanisms producing this bilateral reduction in leg tone. Hypertonus of knee extensors without and during TES, with both cathode (T11-L2) and anode (L3-L5) placed over the spinal column (midline, MID) or 10 cm to the left of midline (lateral, LAT) to only active underlying skin and muscle afferents, was simultaneously measured in both legs with the pendulum test. Spinal reflexes mediated by proprioceptive (H-reflex) and cutaneomuscular reflex (CMR) afferents were examined in the right leg opposite to the applied LAT TES. Hypertonus disappeared in both legs but only during thoracolumbar TES, and even during LAT TES. The marked reduction in tone was reflected in the greater distance both lower legs first dropped to after being released from a fully extended position, increasing by 172.8% and 94.2% during MID and LAT TES, respectively, compared with without TES. Both MID and LAT (left) TES increased H-reflexes but decreased the first burst, and lengthened the onset of subsequent bursts, in the cutaneomuscular reflex of the right leg. Thoracolumbar TES is a promising method to decrease leg hypertonus in chronic, motor complete SCI without activating spinal cord structures and may work by facilitating proprioceptive inputs that activate excitatory interneurons with bilateral projections that in turn recruit recurrent inhibitory neurons.NEW & NOTEWORTHY We present proof of concept that surface stimulation of the lower back can reduce severe leg hypertonus in a participant with motor complete, thoracic spinal cord injury (SCI) but only during the applied stimulation. We propose that activation of skin and muscle afferents from thoracolumbar transcutaneous electrical stimulation (TES) may recruit excitatory spinal interneurons with bilateral projections that in turn recruit recurrent inhibitory networks to provide on demand suppression of ongoing involuntary motoneuron activity.


Assuntos
Hipertonia Muscular , Traumatismos da Medula Espinal , Vértebras Torácicas , Humanos , Perna (Membro)/fisiopatologia , Hipertonia Muscular/fisiopatologia , Hipertonia Muscular/etiologia , Hipertonia Muscular/terapia , Músculo Esquelético/fisiopatologia , Pele/inervação , Traumatismos da Medula Espinal/fisiopatologia , Traumatismos da Medula Espinal/terapia , Traumatismos da Medula Espinal/complicações , Raízes Nervosas Espinhais/fisiopatologia , Raízes Nervosas Espinhais/fisiologia , Estimulação Elétrica Nervosa Transcutânea/métodos
2.
Neuromodulation ; 26(8): 1817-1822, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35941016

RESUMO

OBJECTIVE: This study aimed at determining whether stimulation of sacral spinal roots can induce penile erection in cats. MATERIALS AND METHODS: In anesthetized cats, a 20-gauge catheter was inserted into the corpus cavernosum to measure the penile pressure. Stimulus pulses (5-80 Hz, 0.2 ms) were applied through bipolar hook electrodes to sacral ventral roots alone or to combined ventral and dorsal roots of a single S1-S3 segment to induce penile pressure increases and penile erection. RESULTS: Stimulation of the S1 or S2 ventral root at 30 to 40 Hz induced observable penile erection with rigidity and the largest increase (169 ± 11 cmH2O) in penile pressure. Continuous stimulation (10 minutes) of afferent and efferent axons by simultaneous stimulation of the S1 or S2 dorsal and ventral roots at 30 Hz also produced a large increase (190 ± 8 cmH2O) in penile pressure that was sustainable during the entire stimulation period. After a complete spinal cord transection at the T9-T10 level, simultaneous stimulation of the S1 or S2 dorsal and ventral roots induced large (186 ± 9 cmH2O) and sustainable increases in penile pressure. CONCLUSION: This study indicates the possibility to develop a novel neuromodulation device to restore penile erection after spinal cord injury using a minimally invasive surgical approach to insert a lead electrode through the sacral foramen to stimulate a sacral spinal root.


Assuntos
Ereção Peniana , Traumatismos da Medula Espinal , Masculino , Gatos , Animais , Ereção Peniana/fisiologia , Raízes Nervosas Espinhais/fisiologia , Estimulação Elétrica
3.
PLoS Biol ; 17(9): e3000447, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31513565

RESUMO

In the mouse spinal cord, V1 interneurons are a heterogeneous population of inhibitory spinal interneurons that have been implicated in regulating the frequency of the locomotor rhythm and in organizing flexor and extensor alternation. By introducing archaerhodopsin into engrailed-1-positive neurons, we demonstrate that the function of V1 neurons in locomotor-like activity is more complex than previously thought. In the whole cord, V1 hyperpolarization increased the rhythmic synaptic drive to flexor and extensor motoneurons, increased the spiking in each cycle, and slowed the locomotor-like rhythm. In the hemicord, V1 hyperpolarization accelerated the rhythm after an initial period of tonic activity, implying that a subset of V1 neurons are active in the hemicord, which was confirmed by calcium imaging. Hyperpolarizing V1 neurons resulted in an equalization of the duty cycle in flexor and extensors from an asymmetrical pattern in control recordings in which the extensor bursts were longer than the flexor bursts. Our results suggest that V1 interneurons are composed of several subsets with different functional roles. Furthermore, during V1 hyperpolarization, the default state of the locomotor central pattern generator (CPG) is symmetrical, with antagonist motoneurons each firing with an approximately 50% duty cycle. We hypothesize that one function of the V1 population is to set the burst durations of muscles to be appropriate to their biomechanical function and to adapt to the environmental demands, such as changes in locomotor speed.


Assuntos
Geradores de Padrão Central , Células de Renshaw/fisiologia , Medula Espinal/fisiologia , Animais , Animais Recém-Nascidos , Proteínas Arqueais , Proteínas de Homeodomínio/metabolismo , Técnicas In Vitro , Locomoção , Camundongos , Raízes Nervosas Espinhais/fisiologia
4.
Proc Natl Acad Sci U S A ; 116(30): 15272-15281, 2019 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-31296565

RESUMO

As animals forage for food and water or evade predators, they must rapidly decide what visual features in the environment deserve attention. In vertebrates, this visuomotor computation is implemented within the neural circuits of the optic tectum (superior colliculus in mammals). However, the mechanisms by which tectum decides whether to approach or evade remain unclear, and also which neural mechanisms underlie this behavioral choice. To address this problem, we used an eye-brain-spinal cord preparation to evaluate how the lamprey responds to visual inputs with distinct stimulus-dependent motor patterns. Using ventral root activity as a behavioral readout, we classified 2 main types of fictive motor responses: (i) a unilateral burst response corresponding to orientation of the head toward slowly expanding or moving stimuli, particularly within the anterior visual field, and (ii) a unilateral or bilateral burst response triggering fictive avoidance in response to rapidly expanding looming stimuli or moving bars. A selective pharmacological blockade revealed that the brainstem-projecting neurons in the deep layer of the tectum in interaction with local inhibitory interneurons are responsible for selecting between these 2 visually triggered motor actions conveyed through downstream reticulospinal circuits. We suggest that these visual decision-making circuits had evolved in the common ancestor of vertebrates and have been conserved throughout vertebrate phylogeny.


Assuntos
Comportamento de Escolha/fisiologia , Reação de Fuga/fisiologia , Vias Neurais/fisiologia , Orientação Espacial/fisiologia , Reconhecimento Visual de Modelos/fisiologia , Colículos Superiores/fisiologia , Animais , Mapeamento Encefálico , Tronco Encefálico/anatomia & histologia , Tronco Encefálico/fisiologia , Potenciais Pós-Sinápticos Excitadores/fisiologia , Olho/anatomia & histologia , Interneurônios/citologia , Interneurônios/fisiologia , Lampreias/anatomia & histologia , Lampreias/fisiologia , Atividade Motora/fisiologia , Vias Neurais/anatomia & histologia , Medula Espinal/anatomia & histologia , Medula Espinal/fisiologia , Raízes Nervosas Espinhais/anatomia & histologia , Raízes Nervosas Espinhais/fisiologia , Colículos Superiores/anatomia & histologia
5.
Am J Physiol Gastrointest Liver Physiol ; 321(6): G735-G742, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34855517

RESUMO

The aim of this study was to determine whether stimulation of sacral spinal nerve roots can induce defecation in cats. In anesthetized cats, bipolar hook electrodes were placed on the S1-S3 dorsal and/or ventral roots. Stimulus pulses (1-50 Hz, 0.2 ms) were applied to an individual S1-S3 root to induce proximal/distal colon contractions and defecation. Balloon catheters were inserted into the proximal and distal colon to measure contraction pressure. Glass marbles were inserted into the rectum to demonstrate defecation by videotaping the elimination of marbles. Stimulation of the S2 ventral root at 7 Hz induced significantly (P < 0.05) larger contractions (32 ± 9 cmH2O) in both proximal and distal colon than stimulation of the S1 or S3 ventral root. Intermittent (5 times) stimulation (1 min on and 1 min off) of both dorsal and ventral S2 roots at 7 Hz produced reproducible colon contractions without fatigue, whereas continuous stimulation of 5-min duration caused significant fatigue in colon contractions. Stimulation (7 Hz) of both dorsal and ventral S2 roots together successfully induced defecation that eliminated 1 or 2 marbles from the rectum. This study indicates the possibility to develop a novel neuromodulation device to restore defecation function after spinal cord injury using a minimally invasive surgical approach to insert a lead electrode via the sacral foramen to stimulate a sacral spinal root.NEW & NOTEWORTHY This study in cats determined the optimal stimulation parameters and the spinal segment for sacral spinal root stimulation to induce colon contraction. The results have significant implications for design of a novel neuromodulation device to restore defecation function after spinal cord injury (SCI) and for optimizing sacral neuromodulation parameters to treat non-SCI people with chronic constipation.


Assuntos
Defecação , Raízes Nervosas Espinhais/fisiologia , Animais , Gatos , Colo/inervação , Colo/fisiologia , Estimulação Elétrica , Feminino , Região Lombossacral/fisiologia , Masculino
6.
FASEB J ; 34(8): 10605-10622, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32543730

RESUMO

Ventral root avulsion leads to severe motoneuron degeneration and prolonged distal nerve denervation. After a critical period, a state of chronic denervation develops as repair Schwann cells lose their pro-regenerative properties and inhibitory factors such as CSPGs accumulate in the denervated nerve. In rats with ventral root avulsion injuries, we combined timed GDNF gene therapy delivered to the proximal nerve roots with the digestion of inhibitory CSPGs in the distal denervated nerve using sustained lentiviral-mediated chondroitinase ABC (ChABC) enzyme expression. Following reimplantation of lumbar ventral roots, timed GDNF-gene therapy enhanced motoneuron survival up to 45 weeks and improved axonal outgrowth, electrophysiological recovery, and muscle reinnervation. Despite a timed GDNF expression period, a subset of animals displayed axonal coils. Lentiviral delivery of ChABC enabled digestion of inhibitory CSPGs for up to 45 weeks in the chronically denervated nerve. ChABC gene therapy alone did not enhance motoneuron survival, but led to improved muscle reinnervation and modest electrophysiological recovery during later stages of the regeneration process. Combining GDNF treatment with digestion of inhibitory CSPGs did not have a significant synergistic effect. This study suggests a delicate balance exists between treatment duration and concentration in order to achieve therapeutic effects.


Assuntos
Condroitina ABC Liase/genética , Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Regeneração Nervosa/genética , Raízes Nervosas Espinhais/fisiologia , Animais , Axônios/fisiologia , Linhagem Celular , Feminino , Terapia Genética/métodos , Células HEK293 , Humanos , Neurônios Motores/fisiologia , Regeneração Nervosa/fisiologia , Ratos , Ratos Wistar , Recuperação de Função Fisiológica/genética , Células de Schwann/fisiologia
7.
Neurochem Res ; 46(11): 2897-2908, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34228232

RESUMO

FK1706 is a novel non-immunosuppressive immunophilin ligand with neurotrophic activity and exerts its neurotrophic effect through NGF. The present study aimed to elaborate on the neurotrophic activity and the mechanism of action of FK1706 in end-to-side neurorrhaphy rats and SH-SY5Y cells. In the regenerating nerves of neurorrhaphy rats, FK1706 increased the thickness of myelin sheath and the level of nerve regeneration-related proteins. The mechanism of action of FK1706 on neurite regrowth was elucidated in vitro by incubating SH-SY5Y cells in different conditions (Control, NGF, FK1706, NGF + FK1706, NGF + FK1706 + geldanamycin). Under the conditions where NGF was used, the phosphorylation level of major proteins (Raf-1 and ERK) in the Ras/Raf/MAPK/ERK signaling pathway related to SH-SY5Y cell proliferation was significantly enhanced following the application of FK1706. The number of viable cells, cell viability and neurite length of SH-SY5Y cells was maximal when NGF and FK1706 were used simultaneously. The binding level of HSP90 and Raf-1 in FK1706 group was the highest. These results indicated that FK1706 could significantly promote nerve regeneration after neurorrhaphy. The putative mechanism of action stated that FK1706 could promote the binding of HSP90 and Raf-1, make Raf-1 continue to be activated, thereby affecting key proteins in the Ras/Raf/MAPK/ERK signaling pathway related to the neurotrophic effects of NGF to promote the proliferation and neurite regrowth of nerve cells.


Assuntos
Fator de Crescimento Neural/farmacologia , Regeneração Nervosa/efeitos dos fármacos , Raízes Nervosas Espinhais/efeitos dos fármacos , Raízes Nervosas Espinhais/cirurgia , Tacrolimo/análogos & derivados , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/fisiologia , Humanos , Masculino , Modelos Animais , Fatores de Crescimento Neural/farmacologia , Regeneração Nervosa/fisiologia , Neuritos/efeitos dos fármacos , Neuritos/fisiologia , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Ratos , Ratos Sprague-Dawley , Raízes Nervosas Espinhais/fisiologia , Tacrolimo/farmacologia
8.
Neural Plast ; 2021: 8819380, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33488696

RESUMO

Previous studies suggested that the mode of donor transection is a critical factor affecting the efficacy of the contralateral C7 (CC7) nerve transfer. Nevertheless, the mechanism underlying this phenomenon remains elusive. The aim of this study was to investigate the relationship between the division modes of the CC7 nerve and cortical functional reorganization of Sprague-Dawley rats. We hypothesized that different methods of CC7 nerve transection might induce differences in cortical functional reorganization, thus resulting in differences in surgery efficacy. BDNF, TNF-α/IL-6, and miR-132/134 were selected as indicators of cortical functional reorganization. No significant differences in all these indicators were noted between the entire group and the entire root+posterior division group (P > 0.05). BDNF and miR-132/134 levels in the entire group and the entire root+posterior division group were significantly increased compared with their levels in the posterior group and the blank control group (P < 0.001). In all groups, BDNF, TNF-α/IL-6, and miR-132/134 levels in both hemispheres initially increased and subsequently decreased until week 40. In conclusion, this study provided the evidence of dynamic changes in BDNF, TNF-α/IL-6, and miR-132/134 in the cortex of rats after CC7 nerve transfer using different transecting modes, demonstrating that different CC7 nerve divisions might result in different surgical effects through modulation of cortical reorganization.


Assuntos
Córtex Motor/fisiologia , Fibras Nervosas/fisiologia , Fibras Nervosas/transplante , Transferência de Nervo/métodos , Plasticidade Neuronal/fisiologia , Raízes Nervosas Espinhais/fisiologia , Animais , Plexo Braquial/fisiologia , Plexo Braquial/cirurgia , Vértebras Cervicais/cirurgia , Mediadores da Inflamação/fisiologia , Masculino , Ratos , Ratos Sprague-Dawley , Raízes Nervosas Espinhais/cirurgia
9.
Surg Radiol Anat ; 43(6): 813-818, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32970169

RESUMO

PURPOSE: While palsy of the L5 nerve root due to stretch injury is a known complication in complex lumbosacral spine surgery, the underlying pathophysiology remains unclear. The goal of this cadaveric study was to quantify movement of the L5 nerve root during flexion/extension of the hip and lower lumbar spine. METHODS: Five fresh-frozen human cadavers were dissected on both sides to expose the lumbar vertebral bodies and the L5 nerve roots. Movement of the L5 nerve root was tested during flexion and extension of the hip and lower lumbar spine. Four steps were undertaken to characterize these movements: (1) removal of the bilateral psoas muscles, (2) removal of the lumbar vertebral bodies including the transforaminal ligaments from L3 to L5, (3) opening and removing the dura mater laterally to visualize the rootlets, and (4) removal of remaining soft tissue surrounding the L5 nerve root. Two metal bars were inserted into the sacral body at the level of S1 as fixed landmarks. The tips of these bars were connected to make a line for the ruler that was used to measure movement of the L5 nerve roots. Movement was regarded as measurable when there was an L5 nerve excursion of at least 1 mm. RESULTS: The mean age at death was 86.6 years (range 68-89 years). None of the four steps revealed any measurable movement after flexion/extension of the hip and lower lumbar spine on either side (< 1 mm). Flexion of the hip and lower lumbar spine revealed lax L5 nerve roots. Extension of the hip and lower lumbar spine showed taut ones. CONCLUSION: Significant movement or displacement of the L5 nerve root could not be quantified in this study. No mechanical cause for L5 nerve palsy could be identified so the etiology of the condition remains unclear.


Assuntos
Vértebras Lombares/inervação , Procedimentos Ortopédicos/efeitos adversos , Raízes Nervosas Espinhais/fisiologia , Idoso , Idoso de 80 Anos ou mais , Cadáver , Feminino , Quadril/inervação , Quadril/fisiologia , Humanos , Vértebras Lombares/cirurgia , Região Lombossacral/cirurgia , Masculino , Movimento/fisiologia , Paralisia/etiologia , Complicações Pós-Operatórias/etiologia , Músculos Psoas/inervação , Músculos Psoas/fisiologia , Raízes Nervosas Espinhais/lesões
10.
J Neurophysiol ; 124(3): 985-993, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32783594

RESUMO

Plastic adaptations are known to take place in muscles, tendons, joints, and the nervous system in response to changes in muscle activity. However, few studies have addressed how these plastic adaptations are related. Thus this study focuses on changes in the mechanical properties of the ankle plantarflexor muscle-tendon unit, stretch reflex activity, and spinal neuronal pathways in relation to cast immobilization. The left rat hindlimb from toes to hip was immobilized with a plaster cast for 1, 2, 4, or 8 wk followed by acute electrophysiological recordings to investigate muscle stiffness and stretch reflex torque. Moreover, additional acute experiments were performed after 4 wk of immobilization to investigate changes in the central gain of the stretch reflex. Monosynaptic reflexes (MSR) were recorded from the L4 and L5 ventral roots following stimulation of the corresponding dorsal roots. Rats developed reduced range of movement in the ankle joint 2 wk after immobilization. This was accompanied by significant increases in the stiffness of the muscle-tendon complex as well as an arthrosis at the ankle joint at 4 and 8 wk following immobilization. Stretch reflexes were significantly reduced at 4-8 wk following immobilization. This was associated with increased central gain of the stretch reflex. These data show that numerous interrelated plastic changes occur in muscles, connective tissue, and the central nervous system in response to changes in muscle use. The findings provide an understanding of coordinated adaptations in multiple tissues and have important implications for prevention and treatment of the negative consequences of immobilization following injuries of the nervous and musculoskeletal systems.NEW & NOTEWORTHY Immobilization leads to multiple simultaneous adaptive changes in muscle, connective tissue, and central nervous system.


Assuntos
Adaptação Fisiológica/fisiologia , Articulação do Tornozelo/fisiologia , Imobilização , Músculo Esquelético/fisiologia , Amplitude de Movimento Articular/fisiologia , Reflexo Monosináptico/fisiologia , Reflexo de Estiramento/fisiologia , Raízes Nervosas Espinhais/fisiologia , Animais , Atrofia , Masculino , Ratos , Ratos Sprague-Dawley
11.
J Neurophysiol ; 121(5): 1672-1679, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30840527

RESUMO

Transcutaneous and epidural electrical spinal cord stimulation techniques are becoming more valuable as electrophysiological and clinical tools. Recently, remarkable recovery of the upper limb sensorimotor function during cervical spinal stimulation was demonstrated. In the present study, we sought to elucidate the neural mechanisms underlying the effects of transcutaneous spinal cord stimulation (tSCS) of the cervical spine. We hypothesized that cervical tSCS can be used to selectively activate the sensory route entering the spinal cord and transsynaptically converge on upper limb motor pools. To test this hypothesis, we applied cervical tSCS using paired stimuli (homosynaptic depression) and during passive muscle stretching of the wrist flexor (presynaptic inhibition via Ia afferents), voluntary hand muscle contraction (descending facilitation of motoneuron pool), and muscle-tendon vibration of the wrist (presynaptic inhibition via afferent occlusion). Our results demonstrate significant inhibition of the second evoked response during paired stimulus delivery, inhibition of responses during passive muscle stretching and muscle-tendon vibration, and facilitation during voluntary muscle contraction, which share similarities with responses evoked during lumbosacral tSCS. These results indicate that the route of the stimulation current transmission passes via afferents in the dorsal roots through the spinal cord to activate the motor pools and potentially interneuronal networks projecting to upper limb muscles. Using a novel stimulation paradigm, our study is the first to present evidence of the sensory neuronal pathway of the cervical tSCS propagation. Overall, our work demonstrates the utility and sensitivity of cervical tSCS to engage the sensory pathway projecting to the upper limbs. NEW & NOTEWORTHY Despite therapeutic effects that have been demonstrated previously using noninvasive cervical spinal stimulation, it has been unclear whether, and to what degree, the stimulation can activate the sensory afferent system. Our study presents evidence that cervical transcutaneous spinal cord stimulation can engage the sensory pathways and transsynaptically converge on motor pools projecting to upper limb muscles, demonstrating the utility and sensitivity of cervical spinal stimulation for electrophysiological assessments and neurorehabilitation.


Assuntos
Reflexo , Estimulação da Medula Espinal/métodos , Medula Espinal/fisiologia , Adulto , Vértebras Cervicais/fisiologia , Humanos , Interneurônios/fisiologia , Contração Muscular , Músculo Esquelético/fisiologia , Neurônios Aferentes/fisiologia , Raízes Nervosas Espinhais/fisiologia , Potenciais Sinápticos , Punho/fisiologia
12.
Eur J Neurosci ; 50(7): 3101-3107, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31111553

RESUMO

We report evidence that ephaptic interactions may occur between intact mammalian myelinated nerve fibres and not only between demyelinated or damaged mammalian nerve fibres or nerve cells as analysed in previous studies. The ephaptic interactions were investigated between nerve fibres traversing the lumbar dorsal roots and between bundles of fibres in the sciatic nerve in anaesthetized rats in vivo. The interactions were estimated by comparing the excitability of nerve fibres originating from one of the hindlimb nerves (peroneal or sural) under control conditions and when the stimulation of these fibres was combined with stimulation of another nerve (tibial). An increase in nerve volleys recorded from group I muscle afferents in the peroneal nerve and of the fastest skin afferents in the sural nerve was used as a measure of the increase in the excitability. The excitability of these fibres was increased during a fraction of a millisecond, coinciding with the period of passage of nerve impulses evoked by the conditioning stimulation of the tibial nerve. The degree of the increase was comparable to the increases in the excitability evoked by 1-2 min lasting fibre polarization. Ephaptic interactions were found to be more potent and with longer lasting after-effects within the dorsal roots than within the sciatic nerve. We postulate that ephaptic interactions may result in the synchronization of information forwarded via neighbouring afferent nerve fibres prior to their entry into the spinal cord and thereby securing the propagation of nerve impulses across branching points within the spinal grey matter.


Assuntos
Potenciais de Ação , Fibras Nervosas Mielinizadas/fisiologia , Nervo Isquiático/fisiologia , Raízes Nervosas Espinhais/fisiologia , Animais , Fenômenos Eletrofisiológicos , Ratos Wistar , Medula Espinal
13.
Neuromodulation ; 22(6): 703-708, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30786100

RESUMO

OBJECTIVES: High-frequency (kHz) stimulation of preganglionic pelvic nerve afferents can inhibit voiding in both anesthetized and conscious rats. The afferents travel via the S1 sacral nerve root, which is easier to access than the distal pelvic nerve fibers within the abdominal cavity. We therefore investigated whether voiding could be inhibited by high-frequency stimulation at S1 and how this compared to distal pelvic nerve stimulation. METHODS: Urethane-anesthetized rats were instrumented to record bladder pressure and abdominal wall electromyogram and to stimulate the distal preganglionic pelvic nerve bundle and S1 sacral root. Saline was infused continuously into the bladder to evoke repeated voiding. Stimulation was initiated within 1-2 sec of the onset of the steep rise in bladder pressure signaling an imminent void. RESULTS: In six rats, stimulation of the distal pelvic nerve bundle (1-3 kHz sinusoidal waveform 1 mA, 60 sec) supressed the occurrence of an imminent void. Voiding resumed within 70 ± 13.0 sec (mean ± SEM) of stopping stimulation. Stimulation (using the same parameters) of the S1 root at the level of the sacral foramen suppressed voiding for the entire stimulation period in three rats and deferred voiding for 35-56 sec (mean 44.0 ± 3.2 sec) in the remaining three. Stimulation at either site when the bladder was approximately half full, as estimated from previous intervoid intervals, had no effect on voiding. CONCLUSIONS: This preliminary study provides proof-of-concept for the sacral root as an accessible target for high-frequency stimulation that may be developed as an "on demand" neuromodulation paradigm to suppress unwanted urinary voids. CONFLICT OF INTEREST: The authors reported no conflict of interest.


Assuntos
Anestésicos Intravenosos/administração & dosagem , Terapia por Estimulação Elétrica/métodos , Sacro/inervação , Sacro/fisiologia , Raízes Nervosas Espinhais/fisiologia , Micção/fisiologia , Animais , Feminino , Ratos , Ratos Wistar , Sacro/cirurgia , Raízes Nervosas Espinhais/cirurgia , Uretana/administração & dosagem
14.
J Neurophysiol ; 119(3): 786-795, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29142093

RESUMO

We describe a novel preparation of the isolated brain stem and spinal cord from prometamorphic tadpole stages of the South African clawed frog ( Xenopus laevis) that permits whole cell patch-clamp recordings from neurons in the ventral spinal cord. Previous research on earlier stages of the same species has provided one of the most detailed understandings of the design and operation of a central pattern generator circuit. Here we have addressed how development sculpts complexity from this more basic circuit. The preparation generates bouts of fictive swimming activity either spontaneously or in response to electrical stimulation of the optic tectum, allowing an investigation into how the neuronal properties, activity patterns, and neuromodulation of locomotor rhythm generation change during development. We describe an increased repertoire of cellular responses compared with younger larval stages and investigate the cellular-level effects of nitrergic neuromodulation as well as the development of a sodium pump-mediated ultraslow afterhyperpolarization (usAHP) in these free-swimming larval animals. NEW & NOTEWORTHY A novel in vitro brain stem-spinal cord preparation is described that enables whole cell patch-clamp recordings from spinal neurons in prometamorphic Xenopus tadpoles. Compared with the well-characterized earlier stages of development, spinal neurons display a wider range of firing properties during swimming and have developed novel cellular properties. This preparation now makes it feasible to investigate in detail spinal central pattern generator maturation during the dramatic switch between undulatory and limb-based locomotion strategies during amphibian metamorphosis.


Assuntos
Tronco Encefálico/fisiologia , Geradores de Padrão Central , Neurônios/fisiologia , Medula Espinal/crescimento & desenvolvimento , Raízes Nervosas Espinhais/fisiologia , Natação , Xenopus laevis/fisiologia , Potenciais de Ação , Animais , Larva/fisiologia , Neurônios Motores/fisiologia , Vias Neurais/fisiologia , Neurônios/efeitos dos fármacos , Óxido Nítrico/administração & dosagem , Óxido Nítrico/fisiologia , Medula Espinal/efeitos dos fármacos
15.
J Neurosci Res ; 96(5): 889-900, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29114923

RESUMO

Spinal motoneurons and locomotor networks are regulated by monoamines, among which, the contribution of histamine has yet to be fully addressed. The present study investigates histaminergic regulation of spinal activity, combining intra- and extracellular electrophysiological recordings from neonatal rat spinal cord in vitro preparations. Histamine dose-dependently and reversibly generated motoneuron depolarization and action potential firing. Histamine (20 µM) halved the area of dorsal root reflexes and always depolarized motoneurons. The majority of cells showed a transitory repolarization, while 37% showed a sustained depolarization maintained with intense firing. Extracellularly, histamine depolarized ventral roots (VRs), regardless of blockage of ionotropic glutamate receptors. Initial, transient glutamate-mediated bursting was synchronous among VRs, with some bouts of locomotor activity in a subgroup of preparations. After washout, the amplitude of spontaneous tonic discharges increased. No desensitization or tachyphylaxis appeared after long perfusion or serial applications of histamine. On the other hand, histamine induced single motoneuron and VR depolarization, even in the presence of tetrodotoxin (TTX). During chemically induced fictive locomotion (FL), histamine depolarized VRs. Histamine dose-dependently increased rhythm periodicity and reduced cycle amplitude until near suppression. This study demonstrates that histamine induces direct motoneuron membrane depolarization and modulation of locomotor output, indicating new potential targets for locomotor neurorehabilitation.


Assuntos
Histamina/farmacologia , Neurônios Motores/efeitos dos fármacos , Raízes Nervosas Espinhais/efeitos dos fármacos , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Animais , Estimulação Elétrica , Feminino , Locomoção/efeitos dos fármacos , Locomoção/fisiologia , Masculino , Neurônios Motores/metabolismo , Neurônios Motores/fisiologia , N-Metilaspartato/farmacologia , Ratos , Receptores Ionotrópicos de Glutamato/metabolismo , Raízes Nervosas Espinhais/citologia , Raízes Nervosas Espinhais/metabolismo , Raízes Nervosas Espinhais/fisiologia , Tetrodotoxina/farmacologia
16.
J Biomech Eng ; 140(8)2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-30003260

RESUMO

Cerebrospinal fluid (CSF) dynamics are thought to play a vital role in central nervous system (CNS) physiology. The objective of this study was to investigate the impact of spinal cord (SC) nerve roots (NR) on CSF dynamics. A subject-specific computational fluid dynamics (CFD) model of the complete spinal subarachnoid space (SSS) with and without anatomically realistic NR and nonuniform moving dura wall deformation was constructed. This CFD model allowed detailed investigation of the impact of NR on CSF velocities that is not possible in vivo using magnetic resonance imaging (MRI) or other noninvasive imaging methods. Results showed that NR altered CSF dynamics in terms of velocity field, steady-streaming, and vortical structures. Vortices occurred in the cervical spine around NR during CSF flow reversal. The magnitude of steady-streaming CSF flow increased with NR, in particular within the cervical spine. This increase was located axially upstream and downstream of NR due to the interface of adjacent vortices that formed around NR.


Assuntos
Líquido Cefalorraquidiano/metabolismo , Hidrodinâmica , Modelos Anatômicos , Raízes Nervosas Espinhais/anatomia & histologia , Raízes Nervosas Espinhais/fisiologia , Feminino , Humanos , Imageamento por Ressonância Magnética , Modelagem Computacional Específica para o Paciente , Raízes Nervosas Espinhais/diagnóstico por imagem , Espaço Subaracnóideo/anatomia & histologia , Espaço Subaracnóideo/diagnóstico por imagem , Espaço Subaracnóideo/fisiologia , Adulto Jovem
17.
J Neurophysiol ; 117(2): 796-807, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-27974451

RESUMO

Presynaptic inhibition of the sensory input from the periphery to the spinal cord can be evaluated directly by intra-axonal recording of primary afferent depolarization (PAD) or indirectly by intraspinal microstimulation (excitability testing). Excitability testing is superior for use in normal behaving animals, because this methodology bypasses the technically challenging intra-axonal recording. However, use of excitability testing on the muscle or joint afferent in intact animals presents its own technical challenges. Because these afferents, in many cases, are mixed with motor axons in the peripheral nervous system, it is crucial to dissociate antidromic volleys in the primary afferents from orthodromic volleys in the motor axon, both of which are evoked by intraspinal microstimulation. We have demonstrated in rats that application of a paired stimulation protocol with a short interstimulus interval (ISI) successfully dissociated the antidromic volley in the nerve innervating the medial gastrocnemius muscle. By using a 2-ms ISI, the amplitude of the volleys evoked by the second stimulation was decreased in dorsal root-sectioned rats, but the amplitude did not change or was slightly increased in ventral root-sectioned rats. Excitability testing in rats with intact spinal roots indicated that the putative antidromic volleys exhibited dominant primary afferent depolarization, which was reasonably induced from the more dorsal side of the spinal cord. We concluded that excitability testing with a paired-pulse protocol can be used for studying presynaptic inhibition of somatosensory afferents in animals with intact spinal roots.NEW & NOTEWORTHY Excitability testing of primary afferents has been used to evaluate presynaptic modulation of synaptic transmission in experiments conducted in vivo. However, to apply this method to muscle afferents of animals with intact spinal roots, it is crucial to dissociate antidromic and orthodromic volleys induced by spinal microstimulation. We propose a new method to make this dissociation possible without cutting spinal roots and demonstrate that it facilitates excitability testing of muscle afferents.


Assuntos
Potenciais de Ação/fisiologia , Fenômenos Biofísicos/fisiologia , Potenciais Evocados/fisiologia , Músculo Esquelético/fisiologia , Neurônios Aferentes/fisiologia , Medula Espinal/fisiologia , Animais , Biofísica , Estimulação Elétrica , Masculino , Ratos , Ratos Wistar , Traumatismos da Medula Espinal , Raízes Nervosas Espinhais/fisiologia , Fatores de Tempo
18.
J Neurophysiol ; 117(5): 1877-1893, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28202572

RESUMO

Activation of N-methyl-d-aspartate receptors (NMDARs) requires the binding of a coagonist, either d-serine or glycine, in addition to glutamate. Changes in occupancy of the coagonist binding site are proposed to modulate neural networks including those controlling swimming in frog tadpoles. Here, we characterize regulation of the NMDAR coagonist binding site in mammalian spinal locomotor networks. Blockade of NMDARs by d(-)-2-amino-5-phosphonopentanoic acid (d-APV) or 5,7-dichlorokynurenic acid reduced the frequency and amplitude of pharmacologically induced locomotor-related activity recorded from the ventral roots of spinal-cord preparations from neonatal mice. Furthermore, d-APV abolished synchronous activity induced by blockade of inhibitory transmission. These results demonstrate an important role for NMDARs in murine locomotor networks. Bath-applied d-serine enhanced the frequency of locomotor-related but not disinhibited bursting, indicating that coagonist binding sites are saturated during the latter but not the former mode of activity. Depletion of endogenous d-serine by d-amino acid oxidase or the serine-racemase inhibitor erythro-ß-hydroxy-l-aspartic acid (HOAsp) increased the frequency of locomotor-related activity, whereas application of l-serine to enhance endogenous d-serine synthesis reduced burst frequency, suggesting a requirement for d-serine at a subset of synapses onto inhibitory interneurons. Consistent with this, HOAsp was ineffective during disinhibited activity. Bath-applied glycine (1-100 µM) failed to alter locomotor-related activity, whereas ALX 5407, a selective inhibitor of glycine transporter-1 (GlyT1), enhanced burst frequency, supporting a role for GlyT1 in NMDAR regulation. Together these findings indicate activity-dependent and synapse-specific regulation of the coagonist binding site within spinal locomotor networks, illustrating the importance of NMDAR regulation in shaping motor output.NEW & NOTEWORTHY We provide evidence that NMDARs within murine spinal locomotor networks determine the frequency and amplitude of ongoing locomotor-related activity in vitro and that NMDARs are regulated by d-serine and glycine in a synapse-specific and activity-dependent manner. In addition, glycine transporter-1 is shown to be an important regulator of NMDARs during locomotor-related activity. These results show how excitatory transmission can be tuned to diversify the output repertoire of spinal locomotor networks in mammals.


Assuntos
Atividade Motora , Receptores de N-Metil-D-Aspartato/metabolismo , Raízes Nervosas Espinhais/metabolismo , 2-Amino-5-fosfonovalerato/farmacologia , Animais , Vias Eferentes/efeitos dos fármacos , Vias Eferentes/metabolismo , Vias Eferentes/fisiologia , Glicina/farmacologia , Interneurônios/efeitos dos fármacos , Interneurônios/metabolismo , Interneurônios/fisiologia , Ácido Cinurênico/análogos & derivados , Ácido Cinurênico/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Racemases e Epimerases/antagonistas & inibidores , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Sarcosina/análogos & derivados , Sarcosina/farmacologia , Serina/farmacologia , Raízes Nervosas Espinhais/fisiologia , Sinapses/efeitos dos fármacos , Sinapses/metabolismo , Sinapses/fisiologia
19.
Hum Mol Genet ; 24(23): 6788-800, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26385639

RESUMO

Peripheral nerve injury results in the activation of a number of transcription factors (TFs) in injured neurons, some of which may be key regulators of the regeneration-associated gene (RAG) programme. Among known RAG TFs, ATF3, Smad1, STAT3 and c-Jun have all been linked to successful axonal regeneration and have known functional and physical interactions. We hypothesised that TF expression would promote regeneration of the central axon branch of DRG neurons in the absence of a peripheral nerve lesion and that simultaneous overexpression of multiple RAG TFs would lead to greater effects than delivery of a single TF. Using adeno-associated viral vectors, we overexpressed either the combination of ATF3, Smad1, STAT3 and c-Jun with farnesylated GFP (fGFP), ATF3 only with fGFP, or fGFP only, in DRG neurons and assessed axonal regeneration after dorsal root transection or dorsal column injury and functional improvement after dorsal root injury. ATF3 alone and the combination of TFs promoted faster regeneration in the injured dorsal root. Surprisingly, however, the combination did not perform better than ATF3 alone. Neither treatment was able to induce functional improvement on sensory tests after dorsal root injury or promote regeneration in a dorsal column injury model. The lack of synergistic effects among these factors indicates that while they do increase the speed of axon growth, there may be functional redundancy between these TFs. Because axon growth is considerably less than that seen after a conditioning lesion, it appears these TFs do not induce the full regeneration programme.


Assuntos
Fator 3 Ativador da Transcrição/genética , Axônios/fisiologia , Regeneração Nervosa , Células Receptoras Sensoriais/fisiologia , Raízes Nervosas Espinhais/fisiologia , Animais , Axônios/metabolismo , Proteínas Proto-Oncogênicas c-jun/genética , Ratos , Fator de Transcrição STAT3/genética , Células Receptoras Sensoriais/metabolismo , Proteína Smad1/genética , Raízes Nervosas Espinhais/metabolismo , Regulação para Cima
20.
Neuroradiology ; 59(9): 893-903, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28744730

RESUMO

PURPOSE: Diffusion tensor imaging (DTI) has shown promise in the measurement of peripheral nerve integrity, although the optimal way to apply the technique for the study of lumbar spinal nerves is unclear. The aims of this study are to use an improved DTI acquisition to investigate lumbar nerve root integrity and correlate this with functional measures using neurophysiology. METHODS: Twenty healthy volunteers underwent 3 T DTI of the L5/S1 area. Regions of interest were applied to L5 and S1 nerve roots, and DTI metrics (fractional anisotropy, mean, axial and radial diffusivity) were derived. Neurophysiological measures were obtained from muscles innervated by L5/S1 nerves; these included the slope of motor-evoked potential input-output curves, F-wave latency, maximal motor response, and central and peripheral motor conduction times. RESULTS: DTI metrics were similar between the left and right sides and between vertebral levels. Conversely, significant differences in DTI measures were seen along the course of the nerves. Regression analyses revealed that DTI metrics of the L5 nerve correlated with neurophysiological measures from the muscle innervated by it. CONCLUSION: The current findings suggest that DTI has the potential to be used for assessing lumbar spinal nerve integrity and that parameters derived from DTI provide quantitative information which reflects their function.


Assuntos
Imagem de Tensor de Difusão/métodos , Região Lombossacral , Raízes Nervosas Espinhais/diagnóstico por imagem , Raízes Nervosas Espinhais/fisiologia , Adulto , Anisotropia , Eletromiografia , Potencial Evocado Motor , Feminino , Voluntários Saudáveis , Humanos , Interpretação de Imagem Assistida por Computador , Masculino , Condução Nervosa , Estimulação Magnética Transcraniana
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa