RESUMO
PURPOSE: Boramino acids are a class of amino acid biomimics that replace the carboxylate group with trifluoroborate and can achieve the 18F-labeled positron emission tomography (PET) and boron neutron capture therapy (BNCT) with identical chemical structure. METHODS: This study reports a trifluoroborate-derived boronophenylalanine (BBPA), a derived boronophenylalanine (BPA) for BNCT, as a promising PET tracer for tumor imaging. RESULTS: Competition inhibition assays in cancer cells suggested the cell accumulation of [18F]BBPA is through large neutral amino acid transporter type-1 (LAT-1). Of note, [18F]BBPA is a pan-cancer probe that shows notable tumor uptake in B16-F10 tumor-bearing mice. In the patients with gliomas and metastatic brain tumors, [18F]BBPA-PET shows good tumor uptake and notable tumor-to-normal brain ratio (T/N ratio, 18.7 ± 5.5, n = 11), higher than common amino acid PET tracers. The [18F]BBPA-PET quantitative parameters exhibited no difference in diverse contrast-enhanced status (P = 0.115-0.687) suggesting the [18F]BBPA uptake was independent from MRI contrast-enhancement. CONCLUSION: This study outlines a clinical trial with [18F]BBPA to achieve higher tumor-specific accumulation for PET, provides a potential technique for brain tumor diagnosis, and might facilitate the BNCT of brain tumors.
Assuntos
Compostos de Boro , Neoplasias Encefálicas , Radioisótopos de Flúor , Fenilalanina , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Traçadores Radioativos , Animais , Feminino , Humanos , Camundongos , Compostos de Boro/análise , Compostos de Boro/metabolismo , Compostos de Boro/farmacocinética , Terapia por Captura de Nêutron de Boro , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/metabolismo , Radioisótopos de Flúor/análise , Radioisótopos de Flúor/metabolismo , Radioisótopos de Flúor/farmacocinética , Voluntários Saudáveis , Transportador 1 de Aminoácidos Neutros Grandes/metabolismo , Imageamento por Ressonância Magnética , Melanoma Experimental , Camundongos Endogâmicos C57BL , Sondas Moleculares/análise , Sondas Moleculares/metabolismo , Sondas Moleculares/farmacocinética , Fenilalanina/análogos & derivados , Fenilalanina/análise , Fenilalanina/metabolismo , Fenilalanina/farmacocinética , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Statins are 3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitors that are widely used to prevent cardiovascular diseases. However, a series of pleiotropic mechanisms have been associated with statins, particularly with atorvastatin. Therefore, the assessment of [18F]atorvastatin kinetics with positron emission tomography (PET) may elucidate the mechanism of action of statins and the impact of sexual dimorphism, which is one of the most debated interindividual variations influencing the therapeutic efficacy. [18F]Atorvastatin was synthesized via a previously optimized 18F-deoxyfluorination strategy, used for preclinical PET studies in female and male Wistar rats (n = 7 for both groups), and for subsequent ex vivo biodistribution assessment. PET data were fitted to several pharmacokinetic models, which allowed for estimating relevant kinetic parameters. Both PET imaging and biodistribution studies showed negligible uptake of [18F]atorvastatin in all tissues compared with the primary target organ (liver), excretory pathways (kidneys and small intestine), and stomach. Uptake of [18F]atorvastatin was 38 ± 3% higher in the female liver than in the male liver. The irreversible 2-tissue compartment model showed the best fit to describe [18F]atorvastatin kinetics in the liver. A strong correlation (R2 > 0.93) between quantitative Ki (the radiotracer's unidirectional net rate of influx between compartments) and semi-quantitative liver's SUV (standard uptake value), measured between 40 to 90 min, showed potential to use the latter parameter, which circumvents the need for blood sampling as a surrogate of Ki for monitoring [18F]atorvastatin uptake. Preclinical assays showed faster uptake and clearance for female rats compared to males, seemingly related to a higher efficiency for exchanges between the arterial input and the hepatic tissue. Due to the slow [18F]atorvastatin kinetics, equilibrium between the liver and plasma concentration was not reached during the time frame studied, making it difficult to obtain sufficient and accurate kinetic information to quantitatively characterize the radiotracer pharmacokinetics over time. Nevertheless, the reported results suggest that the SUV can potentially be used as a simplified measure, provided all scans are performed at the same time point. Preclinical PET-studies with [18F]atorvastatin showed faster uptake and clearance in female compared to male rats, apparently related to higher efficiency for exchange between arterial blood and hepatic tissue.
Assuntos
Atorvastatina/farmacocinética , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacocinética , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos/análise , Animais , Atorvastatina/administração & dosagem , Atorvastatina/análise , Atorvastatina/química , Feminino , Radioisótopos de Flúor/administração & dosagem , Radioisótopos de Flúor/análise , Eliminação Hepatobiliar , Inibidores de Hidroximetilglutaril-CoA Redutases/administração & dosagem , Inibidores de Hidroximetilglutaril-CoA Redutases/análise , Masculino , Imagem Molecular/métodos , Compostos Radiofarmacêuticos/administração & dosagem , Ratos , Ratos Wistar , Fatores Sexuais , Distribuição TecidualRESUMO
INTRODUCTION: Benzodiazepines, including temazepam are described as TSPO antagonists. In fact, TSPO was initially described as a peripheral benzodiazepine receptor (PBR) with a secondary binding site for diazepam. TSPO is a potential imaging target of neuroinflammation because there is an amplification of the expression of this receptor. OBJECTIVES: Herein, we developed a novel fluorinated benzodiazepine ligand, [18F]Fluoroethyltemazepam ([18F]F-FETEM), for positron emission tomography (PET) imaging of translocator protein (18 kDa). METHODS: [18F]F-FETEM was radiolabelled with an automated synthesizer via a one-pot procedure. We conducted a [18F]F-aliphatic nucleophilic substitution of a tosylated precursor followed by purification on C18 and Alumina N SPE cartridges. Quality control tests was also carried out. RESULTS: We obtained 2.0-3.0% decay-uncorrected radiochemical activity yield (3.7% decay-corrected) within the whole synthesis time about 33 min. The radiochemical purity of [18F]F-FETEM was over 90% by TLC analysis. CONCLUSIONS: This automated procedure may be used as basis for future production of [18F]F-FETEM for preclinical PET imaging studies.
Assuntos
Radioisótopos de Flúor/análise , Tomografia por Emissão de Pósitrons/métodos , Animais , Benzodiazepinas/análise , Compostos RadiofarmacêuticosRESUMO
γ-Glutamyltranspeptidase (GGT) is a cell -membrane-associated enzyme which has been recognized as a promising biomarker for the diagnosis of many malignant tumors. Herein, we rationally designed a fluorine-18 labeled small-molecule probe, [18F]γ-Glu-Cys(StBu)-PPG(CBT)-AmBF3 (18F-1G), by applying a biocompatible CBT-Cys condensation reaction and ingeniously decorating it with a GGT-recognizable substrate, γ-glutamate (γ-Glu), for enhancing PET imaging to detect GGT level of tumors in living nude mice. The probe had exceptional stability at physiological conditions, but could be efficiently cleaved by GGT, followed by a reduction-triggered self-assembly and formation of nanoparticles (NPs) progressively that could be directly observed by transmission electron microscopy (TEM). In in vitro cell experiments, 18F-1G showed GGT-targeted uptake contrast of 2.7-fold to that of 18F-1 for the detection of intracellular GGT level. Moreover, the higher uptake in GGT overexpressed HCT116 tumor cells (â¼4-fold) compared to GGT-deficient L929 normal cells demonstrated that 18F-1G was also capable of distinguishing some tumor cells from normal cells. In vivo PET imaging revealed enhanced and durable radioactive signal in tumor regions after 18F-1G coinjecting with 1G, thus allowing real-time detection of endogenous GGT level with high sensitivity and noninvasive effect. We anticipated that our probe could serve as a new tool to investigate GGT-related diseases in the near future.
Assuntos
Radioisótopos de Flúor/análise , Neoplasias/enzimologia , Tomografia por Emissão de Pósitrons/métodos , gama-Glutamiltransferase/análise , Animais , Linhagem Celular , Radioisótopos de Flúor/metabolismo , Ácido Glutâmico/análise , Ácido Glutâmico/metabolismo , Camundongos Nus , Neoplasias/diagnóstico por imagem , gama-Glutamiltransferase/metabolismoRESUMO
18F-Sodium Fluoride (NaF) accumulates in areas of active hydroxyapatite deposition and potentially unstable atherosclerotic plaques. We assessed the presence of atherosclerotic plaques in 50 adult patients with HIV (HIV+) who had undergone two cardiac computed tomography scans to measure coronary artery calcium (CAC) progression. CAC and its progression are predictive of an unfavorable prognosis. Tracer uptake was quantified in six arterial territories: aortic arch, innominate carotid artery, right and left internal carotid arteries, left coronary (anterior descending and circumflex) and right coronary artery. Thirty-one patients showed CAC progression and 19 did not. At least one territory with high NaF uptake was observed in 150 (50%) of 300 arterial territories. High NaF uptake was detected more often in non-calcified than calcified areas (68% vs. 32%), and in patients without than in those with prior CAC progression (68% vs. 32%). There was no correlation between clinical and demographic variables and NaF uptake. In clinically stable HIV+ patients, half of the arterial territories showed a high NaF uptake, often in the absence of macroscopic calcification. NaF uptake at one time point did not correlate with prior progression of CAC. Prospective studies will demonstrate the prognostic significance of high NaF uptake in HIV+ patients.
Assuntos
Doença da Artéria Coronariana/diagnóstico por imagem , Radioisótopos de Flúor/análise , Infecções por HIV/complicações , Placa Aterosclerótica/diagnóstico por imagem , Calcificação Vascular/diagnóstico por imagem , Idoso , Doença da Artéria Coronariana/complicações , Doença da Artéria Coronariana/patologia , Progressão da Doença , Feminino , HIV/isolamento & purificação , Humanos , Masculino , Pessoa de Meia-Idade , Placa Aterosclerótica/complicações , Placa Aterosclerótica/patologia , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Fluoreto de Sódio/análise , Calcificação Vascular/complicações , Calcificação Vascular/patologiaRESUMO
In the era of personalized precision medicine, positron emission tomography (PET) and related hybrid methods like PET/CT and PET/MRI gain recognition as indispensable tools of clinical diagnostics. A broader implementation of these imaging modalities in clinical routine is closely dependent on the increased availability of established and emerging PET-tracers, which in turn could be accessible by the development of simple, reliable, and efficient radiolabeling procedures. A further requirement is a cGMP production of imaging probes in automated synthesis modules. Herein, a novel protocol for the efficient preparation of 18F-labeled aromatics via Cu-mediated radiofluorination of (aryl)(mesityl)iodonium salts without the need of evaporation steps is described. Labeled aromatics were prepared in high radiochemical yields simply by heating of iodonium [18F]fluorides with the Cu-mediator in methanolic DMF. The iodonium [18F]fluorides were prepared by direct elution of 18F- from an anion exchange resin with solutions of the corresponding precursors in MeOH/DMF. The practicality of the novel method was confirmed by the racemization-free production of radiolabeled fluorophenylalanines, including hitherto unknown 3-[18F]FPhe, in 22-69% isolated radiochemical yields as well as its direct implementation into a remote-controlled synthesis unit.
Assuntos
Radioisótopos de Flúor/análise , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodosRESUMO
The exposition of phosphatidylserine (PS) from the cell membrane is associated with most cell death programs (apoptosis, necrosis, autophagy, mitotic catastrophe, etc.), which makes PS an attractive target for overall cell death imaging. To this end, zinc(II) macrocycle coordination complexes with cyclic polyamine units as low-molecular-weight annexin mimics have a selective affinity for biomembrane surfaces enriched with PS, and are therefore useful for detection of cell death. In the present study, a 11C-labeled zinc(II)-bis(cyclen) complex (11C-CyclenZn2) was prepared and evaluated as a new positron emission tomography (PET) probe for cell death imaging. 11C-CyclenZn2 was synthesized by methylation of its precursor, 4-methoxy-2,5-di-[10-methyl-1,4,7,10-tetraazacyclododecane-1,4,7-tricarboxylic acid tri-tert-butyl ester] phenol (Boc-Cyclen2) with 11C-methyl triflate as a prosthetic group in acetone, deprotection by hydrolysis in aqueous HCl solution, and chelation with zinc nitrate. The cell death imaging capability of 11C-CyclenZn2 was evaluated using in vitro cell uptake assays with camptothecin-treated PC-3 cells, biodistribution studies, and in vivo PET imaging in Kunming mice bearing S-180 fibrosarcoma. Starting from 11C-methyl triflate, the total preparation time for 11C-CyclenZn2 was ~40 min, with an uncorrected radiochemical yield of 12 ± 3% (based on 11C-CH3OTf, n = 10), a radiochemical purity of greater than 95%, and the specific activity of 0.75-1.01 GBq/µmol. The cell death binding specificity of 11C-CyclenZn2 was demonstrated by significantly different uptake rates in camptothecin-treated and control PC-3 cells in vitro. Inhibition experiments for 18F-radiofluorinated Annexin V binding to apoptotic/necrotic cells illustrated the necessity of zinc ions for zinc(II)-bis(cyclen) complexation in binding cell death, and zinc(II)-bis(cyclen) complexe and Annexin V had not identical binding pattern with apoptosis/necrosis cells. Biodistribution studies of 11C-CyclenZn2 revealed a fast clearance from blood, low uptake rates in brain and muscle tissue, and high uptake rates in liver and kidney, which provide the main metabolic route. PET imaging using 11C-CyclenZn2 revealed that cyclophosphamide-treated mice (CP-treated group) exhibited a significant increase of uptake rate in the tumor at 60 min postinjection, compared with control mice (Control group). The results indicate that the ability of 11C-CyclenZn2 to detect cell death is comparable to Annexin V, and it has potential as a PET tracer for noninvasive evaluation and monitoring of anti-tumor chemotherapy.
Assuntos
Morte Celular , Fibrossarcoma/diagnóstico por imagem , Lipídeos de Membrana/análise , Compostos Organometálicos/síntese química , Compostos Organometálicos/farmacocinética , Fosfatidilserinas/análise , Tomografia por Emissão de Pósitrons/métodos , Zinco/farmacocinética , Adenocarcinoma/patologia , Animais , Anexina A5/análise , Anexina A5/metabolismo , Antineoplásicos Alquilantes/uso terapêutico , Radioisótopos de Carbono/análise , Linhagem Celular Tumoral , Ciclofosfamida/uso terapêutico , Feminino , Fibrossarcoma/tratamento farmacológico , Fibrossarcoma/patologia , Citometria de Fluxo , Radioisótopos de Flúor/análise , Humanos , Masculino , Camundongos , Estrutura Molecular , Peso Molecular , Compostos Organometálicos/análise , Neoplasias da Próstata/patologiaRESUMO
To evaluate the efficacy of 18F-FC119S as a positron emission tomography (PET) radiopharmaceutical for the imaging of Alzheimer's disease (AD), we studied the drug absorption characteristics and distribution of 18F-FC119S in normal mice. In addition, we evaluated the specificity of 18F-FC119S for ß-amyloid (Aß) in the AD group of an APP/PS1 mouse model and compared it with that in the wild-type (WT) group. The behavior of 18F-FC119S in the normal mice was characteristic of rapid brain uptake and washout patterns. In most organs, including the brain, 18F-FC119S reached its maximum concentration within 1 min and was excreted via the intestine. Brain PET imaging of 18F-FC119S showed highly specific binding of the molecule to Aß in the cortex and hippocampus. The brain uptake and binding values for the AD group were higher than those for the WT group. These results indicated that 18F-FC119S would be a candidate PET imaging agent for targeting Aß plaque.
Assuntos
Doença de Alzheimer/diagnóstico por imagem , Radioisótopos de Flúor/análise , Tomografia por Emissão de Pósitrons/métodos , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Modelos Animais de Doenças , Humanos , Imageamento por Ressonância Magnética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Placa Amiloide/diagnóstico por imagem , Placa Amiloide/metabolismoRESUMO
Aciniform silk protein (AcSp1) is the primary component of wrapping silk, the toughest of the spider silks because of a combination of high tensile strength and extensibility. Argiope trifasciata AcSp1 contains a core repetitive domain with at least 14 homogeneous 200-amino acid units ("W" units). Upon fibrillogenesis, AcSp1 converts from an α-helix-rich soluble state to a mixed α-helical/ß-sheet conformation. Solution-state nuclear magnetic resonance (NMR) spectroscopy allowed demonstration of variable local stability within the W unit, but comprehensive characterization was confounded by spectral overlap, which was exacerbated by decreased chemical shift dispersion upon denaturation. Here, (19)F NMR spectroscopy, in the context of a single W unit (W1), is applied to track changes in structure and dynamics. Four strategic positions in the W unit were mutated to tryptophan and biosynthetically labeled with 5-fluorotryptophan (5F-Trp). Simulated annealing-based structure calculations implied that these substitutions should be tolerated, while circular dichroism (CD) spectroscopy and (1)H-(15)N chemical shift displacements indicated minimal structural perturbation in W1 mutants. Fiber formation by W2 concatemers containing 5F-Trp substitutions in both W units demonstrated retention of functionality, a somewhat surprising finding in light of sequence conservation between species. Each 5F-Trp-labeled W1 exhibited a unique (19)F chemical shift, line width, longitudinal relaxation time constant (T1), and solvent isotope shift. Perturbation to (19)F chemical shift and nuclear spin relaxation parameters reflected changes in the conformation and dynamics at each 5F-Trp site upon addition of urea and dodecylphosphocholine (DPC). (19)F NMR spectroscopy allowed unambiguous localized tracking throughout titration with each perturbant, demonstrating distinct behavior for each perturbant not previously revealed by heteronuclear NMR experiments.
Assuntos
Radioisótopos de Flúor/metabolismo , Proteínas de Insetos/química , Espectroscopia de Ressonância Magnética/métodos , Seda/química , Aranhas/fisiologia , Resistência à Tração , Animais , Dicroísmo Circular , Radioisótopos de Flúor/análise , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Mutagênese Sítio-Dirigida , Mutação/genética , Conformação Proteica , Triptofano/genéticaRESUMO
Bradykinin B1 receptor (B1R), which is upregulated in a variety of malignancies, is an attractive cancer imaging biomarker. In this study we optimized the selection of radiolabel-chelator complex to improve tumor uptake and tumor-to-background contrast of radiolabeled analogues of B9958 (Lys-Lys-Arg-Pro-Hyp-Gly-Cpg-Ser-d-Tic-Cpg), a potent B1R antagonist. Peptide sequences were assembled on solid phase. Cold standards were prepared by incubating DOTA-/NODA-conjugated peptides with GaCl3, and by incubating AlOH-NODA-conjugated peptide with NaF. Binding affinities were measured via in vitro competition binding assays. (68)Ga and (18)F labeling experiments were performed in acidic buffer and purified by HPLC. Imaging/biodistribution studies were performed in mice bearing both B1R-positive (B1R+) HEK293T::hB1R and B1R-negative (B1R-) HEK293T tumors. Z02176 (Ga-DOTA-Pip-B9958; Pip: 4-amino-(1-carboxymethyl)piperidine), Z02137 (Ga-NODA-Mpaa-Pip-B9958; Mpaa: 4-methylphenylacetic acid), and Z04139 (AlF-NODA-Mpaa-Pip-B9958) bound hB1R with high affinity (Ki = 1.4-2.5 nM). (68)Ga-/(18)F-labeled peptides were obtained on average in ≥32% decay-corrected radiochemical yield with >99% radiochemical purity and 100-261 GBq/µmol specific activity. Biodistribution/imaging studies at 1 h postinjection showed that all tracers cleared rapidly from background tissues (except kidneys) and were excreted predominantly via the renal pathway. Only kidneys, bladders, and B1R+ tumors were clearly visualized in PET images. Uptake in B1R+ tumor was higher by using (68)Ga-Z02176 (28.9 ± 6.21 %ID/g) and (18)F-Z04139 (22.6 ± 3.41 %ID/g) than (68)Ga-Z02137 (14.0 ± 4.86 %ID/g). The B1R+ tumor-to-blood and B1R+ tumor-to-muscle contrast ratios were also higher for (68)Ga-Z02176 (56.1 ± 17.3 and 167 ± 57.6) and (18)F-Z04139 (58.0 ± 20.9 and 173 ± 42.9) than (68)Ga-Z02137 (34.3 ± 15.2 and 103 ± 30.2). With improved target-to-background contrast (68)Ga-Z02176 and (18)F-Z04139 are promising for imaging B1R expression in cancers with PET.
Assuntos
Antagonistas de Receptor B1 da Bradicinina/análise , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos/análise , Receptor B1 da Bradicinina/metabolismo , Animais , Cromatografia Líquida de Alta Pressão , Radioisótopos de Flúor/análise , Radioisótopos de Gálio/análise , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos KnockoutRESUMO
The combination of fluorine 18 fluorodeoxyglucose (FDG) positron emission tomography (PET) and computed tomography (CT) for dual-modality imaging (PET/CT) plays a key role in the diagnosis and staging of FDG-avid malignancies. FDG uptake by the tumor cells offers an opportunity to detect cancer in organs that appear normal at anatomic imaging and to differentiate viable tumor from posttreatment effects. Quantification of FDG uptake has multiple clinical applications, including cancer diagnosis and staging. Dedicated FDG PET/CT-based visual and quantitative criteria have been developed to evaluate treatment response. Furthermore, the level of tumor FDG uptake reflects the biologic aggressiveness of the tumor, predicting the risk of metastasis and recurrence. FDG uptake can be measured with qualitative, semiquantitative, and quantitative methods. Qualitative or visual assessment of PET/CT images is the most common clinical approach for describing the level of FDG uptake. Standardized uptake value (SUV) is the most commonly used semiquantitative tool for measuring FDG uptake. SUV can be measured as maximum, mean, or peak SUV and may be normalized by using whole or lean body weight. SUV measurements provide the basis for quantitative response criteria; however, SUVs have not been widely adopted as diagnostic thresholds for discriminating malignant and benign lesions. Volumetric FDG uptake measurements such as metabolic tumor volume and total lesion glycolysis have shown substantial promise in providing accurate tumor assessment. SUV measurement and other quantification techniques can be affected by many technical, physical, and biologic factors. Familiarity with FDG uptake quantification approaches and their pitfalls is essential for clinical practice and research.
Assuntos
Radioisótopos de Flúor/análise , Fluordesoxiglucose F18/análise , Neoplasias/diagnóstico por imagem , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Compostos Radiofarmacêuticos/análise , Fatores de Confusão Epidemiológicos , Radioisótopos de Flúor/farmacocinética , Fluordesoxiglucose F18/farmacocinética , Glicólise , Humanos , Estadiamento de Neoplasias/métodos , Neoplasias/metabolismo , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/normas , Compostos Radiofarmacêuticos/farmacocinética , Padrões de Referência , Reprodutibilidade dos Testes , Distribuição TecidualRESUMO
Fluorine is an abundant element and is toxic to organisms from bacteria to humans, but the mechanisms by which eukaryotes resist fluoride toxicity are unknown. The Escherichia coli gene crcB was recently shown to be regulated by a fluoride-responsive riboswitch, implicating it in fluoride response. There are >8,000 crcB homologs across all domains of life, indicating that it has an important role in biology. Here we demonstrate that eukaryotic homologs [renamed FEX (fluoride exporter)] function in fluoride export. FEX KOs in three eukaryotic model organisms, Neurospora crassa, Saccharomyces cerevisiae, and Candida albicans, are highly sensitized to fluoride (>200-fold) but not to other halides. Some of these KO strains are unable to grow in fluoride concentrations found in tap water. Using the radioactive isotope of fluoride, (18)F, we developed an assay to measure the intracellular fluoride concentration and show that the FEX deletion strains accumulate fluoride in excess of the external concentration, providing direct evidence of FEX function in fluoride efflux. In addition, they are more sensitive to lower pH in the presence of fluoride. These results demonstrate that eukaryotic FEX genes encode a previously unrecognized class of fluoride exporter necessary for survival in standard environmental conditions.
Assuntos
Candida albicans/genética , Poluentes Ambientais/metabolismo , Fluoretos/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Neurospora crassa/genética , Saccharomyces cerevisiae/genética , Poluentes Ambientais/toxicidade , Fluoretos/toxicidade , Radioisótopos de Flúor/análise , Técnicas de Inativação de Genes , Proteínas de Membrana Transportadoras/genética , FilogeniaRESUMO
BACKGROUND: Kaposi sarcoma herpesvirus (KSHV)-associated multicentric Castleman disease (MCD) is a lymphoproliferative inflammatory disorder commonly associated with human immunodeficiency virus (HIV). Its presentation may be difficult to distinguish from HIV and its complications, including lymphoma. Novel imaging strategies could address these problems. METHODS: We prospectively characterized (18)F-fluorodeoxyglucose positron emission tomography (PET) findings in 27 patients with KSHV-MCD. Patients were imaged with disease activity and at remission with scans evaluated blind to clinical status. Symptoms, C-reactive protein level, and HIV and KSHV loads were assessed in relation to imaging findings. RESULTS: KSHV-MCD activity was associated with hypermetabolic symmetric lymphadenopathy (median maximal standardized uptake value [SUVmax], 6.0; range, 2.0-8.0) and splenomegaly (3.4; 1.2-11.0), with increased metabolism also noted in the marrow (2.1; range, 1.0-3.5) and salivary glands (3.0; range, 2.0-6.0). The (18)F-fluorodeoxyglucose PET abnormalities improved at remission, with significant SUVmax decreases in the lymph nodes (P = .004), spleen (P = .008), marrow (P = .004), and salivary glands (P = .004). Nodal SUVmax correlated with symptom severity (P = .005), C-reactive protein level (R = 0.62; P = .004), and KSHV load (R = 0.54; P = .02) but not HIV load (P = .52). CONCLUSIONS: KSHV-MCD activity is associated with (18)F-FDG PET abnormalities of the lymph nodes, spleen, marrow, and salivary glands. These findings have clinical implications for the diagnosis and monitoring of KSHV-MCD and shed light on its pathobiologic mechanism.
Assuntos
Hiperplasia do Linfonodo Gigante/diagnóstico por imagem , Infecções por HIV/complicações , Herpesvirus Humano 8/fisiologia , Tomografia por Emissão de Pósitrons/métodos , Sarcoma de Kaposi/complicações , Adulto , Proteína C-Reativa/metabolismo , Hiperplasia do Linfonodo Gigante/complicações , Hiperplasia do Linfonodo Gigante/virologia , Feminino , Radioisótopos de Flúor/análise , Fluordesoxiglucose F18 , Humanos , Linfonodos/diagnóstico por imagem , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Glândulas Salivares/diagnóstico por imagem , Sarcoma de Kaposi/diagnóstico por imagem , Sarcoma de Kaposi/virologia , Baço/diagnóstico por imagemRESUMO
Drug-loaded nanocarriers and nanoparticulate systems used for drug release require a careful in vivo evaluation in terms of physicochemical and pharmacokinetic properties. Nuclear imaging techniques such as positron emission tomography (PET) are ideal and noninvasive tools to investigate the biodistribution and biological fate of the nanostructures, but the incorporation of a positron emitter is required. Here we describe a novel approach for the (18)F-radiolabeling of polyester-based nanoparticles. Our approach relies on the preparation of the radiolabeled active agent 4-[(18)F]fluorobenzyl-2-bromoacetamide ([(18)F]FBBA), which is subsequently coupled to block copolymers under mild conditions. The labeled block copolymers are ultimately incorporated as constituent elements of the NPs by using a modified nano coprecipitation method. This strategy has been applied in the current work to the preparation of peptide-functionalized NPs with potential applications in drug delivery. According to the measurements of particle size and zeta potential, the radiolabeling process did not result in a statistically significant alteration of the physicochemical properties of the NPs. Moreover, radiochemical stability studies showed no detachment of the radioactivity from NPs even at 12 h after preparation. The radiolabeled NPs enabled the in vivo quantification of the biodistribution data in rats using a combination of imaging techniques, namely, PET and computerized tomography (CT). Low accumulation of the nanoparticles in the liver and their elimination mainly via urine was found. The different biodistribution pattern obtained for the "free" radiolabeled polymer suggests chemical and radiochemical integrity of the NPs under investigation. The strategy reported here may be applied to any polymeric NPs containing polymers bearing a nucleophile, and hence our novel strategy may find application for the in vivo and noninvasive investigation of a wide range of NPs.
Assuntos
Radioisótopos de Flúor/análise , Nanopartículas/química , Poliésteres/química , Tomografia por Emissão de Pósitrons , Coloração e Rotulagem/métodos , Tomografia Computadorizada por Raios X , Animais , Radioisótopos de Flúor/metabolismo , Nanopartículas/metabolismo , Poliésteres/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Ratos , Ratos Sprague-Dawley , Distribuição Tecidual/fisiologia , Tomografia Computadorizada por Raios X/métodosRESUMO
A novel radiofluorinated derivative of bombesin, (18)F-AmBF3-MJ9, was synthesized and evaluated for its potential to image prostate cancer by targeting the gastrin releasing peptide receptor (GRPR). AmBF3-MJ9 was prepared from an ammoniomethyl-trifluoroborate (AmBF3) conjugated alkyne 2 and azidoacetyl-MJ9 via a copper-catalyzed click reaction, and had good binding affinity for GRPR (Ki=0.5±0.1nM). The (18)F-labeling was performed via a facile one-step (18)F-(19)F isotope exchange reaction, and (18)F-AmBF3-MJ9 was obtained in 23±5% (n=3) radiochemical yield in 25min with >99% radiochemical purity and 100±32GBq/µmol specific activity. (18)F-AmBF3-MJ9 was stable in mouse plasma, and was partially (22-30%) internalized after binding to GRPR. Positron emission tomography (PET) imaging and biodistribution studies in mice showed fast renal excretion and good uptake of (18)F-AmBF3-MJ9 by GRPR-expressing pancreas and PC-3 prostate cancer xenografts. Tumor uptake was 1.37±0.25%ID/g at 1h, and 2.20±0.13%ID/g at 2h post-injection (p.i.) with low background uptake and excellent tumor visualization (tumor-to-muscle ratios of 75.4±5.5). These data suggest that (18)F-AmBF3-MJ9 is a promising PET tracer for imaging GRPR-expressing prostate cancers.
Assuntos
Bombesina/análise , Radioisótopos de Flúor/análise , Neoplasias da Próstata/diagnóstico por imagem , Animais , Bombesina/química , Bombesina/metabolismo , Radioisótopos de Flúor/química , Radioisótopos de Flúor/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Tomografia por Emissão de Pósitrons/métodos , Neoplasias da Próstata/metabolismo , Tomografia Computadorizada por Raios X/métodosRESUMO
A novel PET probe, 6-[(11)C]methyl-m-tyrosine ([(11)C]6MemTyr), was developed for quantitative imaging of presynaptic dopamine (DA) synthesis in the living brain using positron emission tomography (PET). This probe was evaluated by comparison with conventional 6-[(18)F]fluoro-l-dopa ([(18)F]FDOPA). [(11)C]6MemTyr was labeled using rapid Pd(0)-mediated C-[(11)C]methylation with [(11)C]methyl iodide. The synthesis time was only 35min, and its radiochemical yield was 76%, with radiochemical purity of >99%. PET measurements indicated that [(11)C]6MemTyr could image presynaptic DA synthesis in the striatum of living monkey brain, providing much higher contrast between the striatum and the cerebellum than that with [(18)F]FDOPA.
Assuntos
Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Radioisótopos de Carbono/análise , Dopamina/análise , Metiltirosinas/análise , Tomografia por Emissão de Pósitrons/métodos , Animais , Radioisótopos de Carbono/metabolismo , Corpo Estriado/diagnóstico por imagem , Corpo Estriado/metabolismo , Dopamina/metabolismo , Radioisótopos de Flúor/análise , Radioisótopos de Flúor/metabolismo , Levodopa/análise , Macaca fascicularis , Masculino , Metiltirosinas/síntese química , Metiltirosinas/metabolismo , Compostos Radiofarmacêuticos/análise , Compostos Radiofarmacêuticos/síntese química , Compostos Radiofarmacêuticos/metabolismoRESUMO
A derivatization method that employs diethyl (bromodifluoromethyl) phosphonate (DBDFP) to efficiently tag the endocrine disruptor pentachlorophenol (PCP) and other chlorinated phenols (CPs) along with their reliable detection and analysis by NMR is presented. The method accomplishes the efficient alkylation of the hydroxyl group in CPs with the difluoromethyl (CF2H) moiety in extremely rapid fashion (5 min), at room temperature and in an environmentally benign manner. The approach proved successful in difluoromethylating a panel of 18 chlorinated phenols, yielding derivatives that displayed unique (1)H, (19)F, and (13)C NMR spectra allowing for the clear discrimination between isomerically related CPs. Due to its biphasic nature, the derivatization can be applied to both aqueous and organic mixtures where the analysis of CPs is required. Furthermore, the methodology demonstrates that PCP along with other CPs can be selectively derivatized in the presence of other various aliphatic alcohols, underscoring the superiority of the approach over other general derivatization methods that indiscriminately modify all analytes in a given sample. The present work demonstrates the first application of NMR on the qualitative analysis of these highly toxic and environmentally persistent species.
Assuntos
Clorofenóis/análise , Clorofenóis/química , Disruptores Endócrinos/análise , Disruptores Endócrinos/química , Espectroscopia de Prótons por Ressonância Magnética/métodos , Radioisótopos de Flúor/análise , Radioisótopos de Flúor/química , Marcação por Isótopo/métodos , Reprodutibilidade dos Testes , Sensibilidade e EspecificidadeRESUMO
Although numerous positron emission tomography (PET) studies with (18) F-fluoro-deoxyglucose (FDG) have reported quantitative results on cerebral glucose kinetics and consumption, there is a large variation between the absolute values found in the literature. One of the underlying causes is the inconsistent use of the lumped constants (LCs), the derivation of which is often based on multiple assumptions that render absolute numbers imprecise and errors hard to quantify. We combined a kinetic FDG-PET study with magnetic resonance spectroscopic imaging (MRSI) of glucose dynamics in Sprague-Dawley rats to obtain a more comprehensive view of brain glucose kinetics and determine a reliable value for the LC under isoflurane anaesthesia. Maps of Tmax /CMRglc derived from MRSI data and Tmax determined from PET kinetic modelling allowed to obtain an LC-independent CMRglc . The LC was estimated to range from 0.33 ± 0.07 in retrosplenial cortex to 0.44 ± 0.05 in hippocampus, yielding CMRglc between 62 ± 14 and 54 ± 11 µmol/min/100 g, respectively. These newly determined LCs for four distinct areas in the rat brain under isoflurane anaesthesia provide means of comparing the growing amount of FDG-PET data available from translational studies.
Assuntos
Algoritmos , Anestésicos Inalatórios/farmacologia , Química Encefálica/efeitos dos fármacos , Encéfalo/metabolismo , Glucose/metabolismo , Isoflurano/farmacologia , Espectroscopia de Ressonância Magnética/métodos , Imagem Multimodal/métodos , Tomografia por Emissão de Pósitrons/métodos , Animais , Transporte Biológico , Encéfalo/diagnóstico por imagem , Encéfalo/efeitos dos fármacos , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Radioisótopos de Flúor/análise , Radioisótopos de Flúor/farmacocinética , Fluordesoxiglucose F18/análise , Fluordesoxiglucose F18/farmacocinética , Hipocampo/diagnóstico por imagem , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Modelos Biológicos , Compostos Radiofarmacêuticos/análise , Compostos Radiofarmacêuticos/farmacocinética , Ratos , Ratos Sprague-Dawley , Tálamo/diagnóstico por imagem , Tálamo/efeitos dos fármacos , Tálamo/metabolismoRESUMO
PURPOSE: Respiratory gating is an established approach to overcoming respiration-induced image artefacts in PET. Of special interest in this respect are raw PET data-driven gating methods which do not require additional hardware to acquire respiratory signals during the scan. However, these methods rely heavily on the quality of the acquired PET data (statistical properties, data contrast, etc.). We therefore combined external radioactive markers with data-driven respiratory gating in PET/CT. The feasibility and accuracy of this approach was studied for [(18)F]FDG PET/CT imaging in patients with malignant liver and lung lesions. METHODS: PET data from 30 patients with abdominal or thoracic [(18)F]FDG-positive lesions (primary tumours or metastases) were included in this prospective study. The patients underwent a 10-min list-mode PET scan with a single bed position following a standard clinical whole-body [(18)F]FDG PET/CT scan. During this scan, one to three radioactive point sources (either (22)Na or (18)F, 50-100 kBq) in a dedicated holder were attached the patient's abdomen. The list mode data acquired were retrospectively analysed for respiratory signals using established data-driven gating approaches and additionally by tracking the motion of the point sources in sinogram space. Gated reconstructions were examined qualitatively, in terms of the amount of respiratory displacement and in respect of changes in local image intensity in the gated images. RESULTS: The presence of the external markers did not affect whole-body PET/CT image quality. Tracking of the markers led to characteristic respiratory curves in all patients. Applying these curves for gated reconstructions resulted in images in which motion was well resolved. Quantitatively, the performance of the external marker-based approach was similar to that of the best intrinsic data-driven methods. Overall, the gain in measured tumour uptake from the nongated to the gated images indicating successful removal of respiratory motion was correlated with the magnitude of the respiratory displacement of the respective tumour lesion, but not with lesion size. CONCLUSION: Respiratory information can be assessed from list-mode PET/CT through PET data-derived tracking of external radioactive markers. This information can be successfully applied to respiratory gating to reduce motion-related image blurring. In contrast to other previously described PET data-driven approaches, the external marker approach is independent of tumour uptake and thereby applicable even in patients with poor uptake and small tumours.
Assuntos
Imagem Multimodal/métodos , Tomografia por Emissão de Pósitrons , Técnicas de Imagem de Sincronização Respiratória , Tomografia Computadorizada por Raios X , Idoso , Idoso de 80 Anos ou mais , Feminino , Radioisótopos de Flúor/análise , Fluordesoxiglucose F18 , Humanos , Masculino , Pessoa de Meia-Idade , Neoplasias/diagnóstico por imagem , Compostos Radiofarmacêuticos , Radioisótopos de Sódio/análiseRESUMO
The aim of this project was to synthesize and evaluate three novel fluorine-18 labeled derivatives of propargyl amine as potential PET radioligands to visualize monoamine oxidase B (MAO-B) activity. The three fluorinated derivatives of propargyl amine ((S)-1-fluoro-N,4-dimethyl-N-(prop-2-ynyl)-pent-4-en-2-amine (5), (S)-N-(1-fluoro-3-(furan-2-yl)propan-2-yl)-N-methylprop-2-yn-1-amine (10) and (S)-1-fluoro-N,4-dimethyl-N-(prop-2-ynyl)pentan-2-amine (15)) were synthesized in multi-step organic syntheses. IC(50) values for inhibition were determined for compounds 5, 10 and 15 in order to determine their specificity for binding to MAO-B. Compound 5 inhibited MAO-B with an IC(50) of 664 ± 48.08 nM. No further investigation was carried out with this compound. Compound 10 inhibited MAO-B with an IC(50) of 208.5 ± 13.44 nM and compound 15 featured an IC(50) of 131.5 ± 0.71 nM for its MAO-B inhibitory activity. None of the compounds inhibited MAO-A activity (IC(50) > 2 µM). The fluorine-18 labeled analogues of the two higher binding affinity compounds (10 and 15) (S)-N-(1-[(18)F]fluoro-3-(furan-2-yl)propan-2-yl)-N-methylprop-2-yn-1-amine (16) and (S)-1-[(18)F]fluoro-N,4-dimethyl-N-(prop-2-ynyl)pentan-2-amine (18) were both prepared from the corresponding precursors 9A, 9B and 14A, 14B by a one-step fluorine-18 nucleophilic substitution reaction. Autoradiography experiments on human postmortem brain tissue sections were performed with 16 and 18. Only compound 18 demonstrated a high selectivity for MAO-B over MAO-A and was, therefore, chosen for further examination by PET in a cynomolgus monkey. The initial uptake of 18 in the monkey brain was 250% SUV at 4 min post injection. The highest uptake of radioactivity was observed in the striatum and thalamus, regions with high MAO-B activity, whereas lower levels of radioactivity were detected in the cortex and cerebellum. The percentage of unchanged radioligand 18 was 30% in plasma at 90min post injection. In conclusion, compound 18 is a selective inhibitor of MAO-B in vitro and demonstrated a MAO-B specific binding pattern in vivo by PET in monkey. It can, therefore, be considered as a candidate for further investigation in human by PET.