Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 584
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Am J Pathol ; 194(7): 1374-1387, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38537932

RESUMO

Clear-cell renal cell carcinoma (ccRCC), a tubular epithelial malignancy, secretes tumor necrosis factor (TNF), which signals ccRCC cells in an autocrine manner via two cell surface receptors, TNFR1 and TNFR2, to activate shared and distinct signaling pathways. Selective ligation of TNFR2 drives cell cycle entry of malignant cells via a signaling pathway involving epithelial tyrosine kinase, vascular endothelial cell growth factor receptor type 2, phosphatidylinositol-3-kinase, Akt, pSer727-Stat3, and mammalian target of rapamycin. In this study, phosphorylated 4E binding protein-1 (4EBP1) serine 65 (pSer65-4EBP1) was identified as a downstream target of this TNFR2 signaling pathway. pSer65-4EBP1 expression was significantly elevated relative to total 4EBP1 in ccRCC tissue compared with that in normal kidneys, with signal intensity increasing with malignant grade. Selective ligation of TNFR2 with the TNFR2-specific mutein increased pSer65-4EBP1 expression in organ cultures that co-localized with internalized TNFR2 in mitochondria and increased expression of mitochondrially encoded COX (cytochrome c oxidase subunit) Cox1, as well as nuclear-encoded Cox4/5b subunits. Pharmacologic inhibition of mammalian target of rapamycin reduced both TNFR2-specific mutein-mediated phosphorylation of 4EBP1 and cell cycle activation in tumor cells while increasing cell death. These results signify the importance of pSer65-4EBP1 in mediating TNFR2-driven cell-cycle entry in tumor cells in ccRCC and implicate a novel relationship between the TNFR2/pSer65-4EBP1/COX axis and mitochondrial function.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Carcinoma de Células Renais , Proteínas de Ciclo Celular , Proliferação de Células , Neoplasias Renais , Mitocôndrias , Receptores Tipo II do Fator de Necrose Tumoral , Transdução de Sinais , Carcinoma de Células Renais/metabolismo , Carcinoma de Células Renais/patologia , Carcinoma de Células Renais/genética , Humanos , Neoplasias Renais/metabolismo , Neoplasias Renais/patologia , Neoplasias Renais/genética , Fosforilação , Receptores Tipo II do Fator de Necrose Tumoral/metabolismo , Receptores Tipo II do Fator de Necrose Tumoral/genética , Mitocôndrias/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Fosfoproteínas/metabolismo , Biossíntese de Proteínas , Linhagem Celular Tumoral
2.
J Biol Chem ; 299(4): 103051, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36813234

RESUMO

The phenomenon of multidrug resistance (MDR) is called chemoresistance with respect to the treatment of cancer, and it continues to be a major challenge. The role of N-glycosylation in chemoresistance, however, remains poorly understood. Here, we established a traditional model for adriamycin resistance in K562 cells, which are also known as K562/adriamycin-resistant (ADR) cells. Lectin blot, mass spectrometry, and RT-PCR analysis showed that the expression levels of N-acetylglucosaminyltransferase III (GnT-III) mRNA and its products, bisected N-glycans, are significantly decreased in K562/ADR cells, compared with the levels in parent K562 cells. By contrast, the expression levels of both P-glycoprotein (P-gp) and its intracellular key regulator, NF-κB signaling, are significantly increased in K562/ADR cells. These upregulations were sufficiently suppressed by the overexpression of GnT-III in K562/ADR cells. We found that the expression of GnT-III consistently decreased chemoresistance for doxorubicin and dasatinib, as well as activation of the NF-κB pathway by tumor necrosis factor (TNF) α, which binds to two structurally distinct glycoproteins, TNF receptor 1 (TNFR1) and TNF receptor 2 (TNFR2), on the cell surface. Interestingly, our immunoprecipitation analysis revealed that only TNFR2, but not TNFR1, contains bisected N-glycans. The lack of GnT-III strongly induced TNFR2's autotrimerization without ligand stimulation, which was rescued by the overexpression of GnT-III in K562/ADR cells. Furthermore, the deficiency of TNFR2 suppressed P-gp expression while it increased GnT-III expression. Taken together, these results clearly show that GnT-III negatively regulates chemoresistance via the suppression of P-gp expression, which is regulated by the TNFR2-NF/κB signaling pathway.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP , NF-kappa B , Humanos , NF-kappa B/genética , NF-kappa B/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Resistencia a Medicamentos Antineoplásicos , Receptores Tipo II do Fator de Necrose Tumoral/genética , Transdução de Sinais , Doxorrubicina/farmacologia , Polissacarídeos/metabolismo , N-Acetilglucosaminiltransferases/genética , N-Acetilglucosaminiltransferases/metabolismo
3.
Biochem Biophys Res Commun ; 697: 149498, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38262291

RESUMO

Regulatory T cells (Tregs) are lymphocytes that play a central role in peripheral immune tolerance. Tregs are promising targets for the prevention and suppression of autoimmune diseases, allergies, and graft-versus-host disease, and treatments aimed at regulating their functions are being developed. In this study, we created a new modality consisting of a protein molecule that suppressed excessive immune responses by effectively and preferentially expanding Tregs. Recent studies reported that tumor necrosis factor receptor type 2 (TNFR2) expressed on Tregs is involved in the proliferation and activation of Tregs. Therefore, we created a functional immunocytokine, named TNFR2-ICK-Ig, consisting of a fusion protein of an anti-TNFR2 single-chain Fv (scFv) and a TNFR2 agonist TNF-α mutant protein, as a new modality that strongly enhances TNFR2 signaling. The formation of agonist-receptor multimerization (TNFR2 cluster) is effective for the induction of a strong TNFR2 signal, similar to the TNFR2 signaling mechanism exhibited by membrane-bound TNF. TNFR2-ICK-Ig improved the TNFR2 signaling activity and promoted TNFR2 cluster formation compared to a TNFR2 agonist TNF-α mutant protein that did not have an immunocytokine structure. Furthermore, the Treg expansion efficiency was enhanced. TNFR2-ICK-Ig promotes its effects via scFv, which crosslinks receptors whereas the agonists transmit stimulatory signals. Therefore, this novel molecule expands Tregs via strong TNFR2 signaling by the formation of TNFR2 clustering.


Assuntos
Anticorpos de Cadeia Única , Linfócitos T Reguladores , Proteínas de Transporte/metabolismo , Proteínas Mutantes/metabolismo , Receptores Tipo II do Fator de Necrose Tumoral/genética , Receptores Tipo II do Fator de Necrose Tumoral/agonistas , Anticorpos de Cadeia Única/genética , Anticorpos de Cadeia Única/farmacologia , Anticorpos de Cadeia Única/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Humanos , Animais , Camundongos
4.
Brain Behav Immun ; 116: 269-285, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38142915

RESUMO

Microglia, the resident immune cells of the central nervous system (CNS), play a major role in damage progression and tissue remodeling after acute CNS injury, including ischemic stroke (IS) and spinal cord injury (SCI). Understanding the molecular mechanisms regulating microglial responses to injury may thus reveal novel therapeutic targets to promote CNS repair. Here, we investigated the role of microglial tumor necrosis factor receptor 2 (TNFR2), a transmembrane receptor previously associated with pro-survival and neuroprotective responses, in shaping the neuroinflammatory environment after CNS injury. By inducing experimental IS and SCI in Cx3cr1CreER:Tnfrsf1bfl/fl mice, selectively lacking TNFR2 in microglia, and corresponding Tnfrsf1bfl/fl littermate controls, we found that ablation of microglial TNFR2 significantly reduces lesion size and pro-inflammatory cytokine levels, and favors infiltration of leukocytes after injury. Interestingly, these effects were paralleled by opposite sex-specific modifications of microglial reactivity, which was found to be limited in female TNFR2-ablated mice compared to controls, whereas it was enhanced in males. In addition, we show that TNFR2 protein levels in the cerebrospinal fluid (CSF) of human subjects affected by IS and SCI, as well as healthy donors, significantly correlate with disease stage and severity, representing a valuable tool to monitor the inflammatory response after acute CNS injury. Hence, these results advance our understanding of the mechanisms regulating microglia reactivity after acute CNS injury, aiding the development of sex- and microglia-specific, personalized neuroregenerative strategies.


Assuntos
Microglia , Traumatismos da Medula Espinal , Animais , Feminino , Humanos , Masculino , Camundongos , Sistema Nervoso Central/metabolismo , Citocinas/metabolismo , Microglia/metabolismo , Receptores Tipo II do Fator de Necrose Tumoral/genética , Receptores Tipo II do Fator de Necrose Tumoral/metabolismo , Traumatismos da Medula Espinal/metabolismo
5.
Proc Natl Acad Sci U S A ; 118(13)2021 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-33766913

RESUMO

CD4+Foxp3+ regulatory T (Treg) cells are central modulators of autoimmune diseases. However, the timing and location of Treg cell-mediated suppression of tissue-specific autoimmunity remain undefined. Here, we addressed these questions by investigating the role of tumor necrosis factor (TNF) receptor 2 (TNFR2) signaling in Treg cells during experimental autoimmune encephalomyelitis (EAE), a model of multiple sclerosis. We found that TNFR2-expressing Treg cells were critical to suppress EAE at peak disease in the central nervous system but had no impact on T cell priming in lymphoid tissues at disease onset. Mechanistically, TNFR2 signaling maintained functional Treg cells with sustained expression of CTLA-4 and Blimp-1, allowing active suppression of pathogenic T cells in the inflamed central nervous system. This late effect of Treg cells was further confirmed by treating mice with TNF and TNFR2 agonists and antagonists. Our findings show that endogenous Treg cells specifically suppress an autoimmune disease by acting in the target tissue during overt inflammation. Moreover, they bring a mechanistic insight to some of the adverse effects of anti-TNF therapy in patients.


Assuntos
Encefalomielite Autoimune Experimental/imunologia , Esclerose Múltipla/imunologia , Receptores Tipo II do Fator de Necrose Tumoral/metabolismo , Linfócitos T Reguladores/imunologia , Animais , Medula Óssea/patologia , Antígeno CTLA-4/metabolismo , Sistema Nervoso Central/imunologia , Sistema Nervoso Central/patologia , Encefalomielite Autoimune Experimental/tratamento farmacológico , Encefalomielite Autoimune Experimental/patologia , Humanos , Camundongos , Camundongos Knockout , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla/patologia , Fator 1 de Ligação ao Domínio I Regulador Positivo/metabolismo , Receptores Tipo II do Fator de Necrose Tumoral/agonistas , Receptores Tipo II do Fator de Necrose Tumoral/antagonistas & inibidores , Receptores Tipo II do Fator de Necrose Tumoral/genética , Transdução de Sinais/imunologia , Linfócitos T Reguladores/metabolismo
6.
Proc Natl Acad Sci U S A ; 118(50)2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34873037

RESUMO

TNF, produced largely by T and innate immune cells, is potently proinflammatory, as are cytokines such as IFN-γ and IL-17 produced by Th1 and Th17 cells, respectively. Here, we asked if TNF is upstream of Th skewing toward inflammatory phenotypes. Exposure of mouse CD4+ T cells to TNF and TGF-ß generated Th17 cells that express low levels of IL-17 (ROR-γt+IL-17lo) and high levels of inflammatory markers independently of IL-6 and STAT3. This was mediated by the nondeath TNF receptor TNFR2, which also contributed to the generation of inflammatory Th1 cells. Single-cell RNA sequencing of central nervous system-infiltrating CD4+ T cells in mouse experimental autoimmune encephalomyelitis (EAE) found an inflammatory gene expression profile similar to cerebrospinal fluid-infiltrating CD4+ T cells from patients with multiple sclerosis. Notably, TNFR2-deficient CD4+ T cells produced fewer inflammatory mediators and were less pathogenic in EAE and colitis. IL-1ß, a Th17-skewing cytokine, induced TNF and proinflammatory granulocyte-macrophage colony-stimulating factor (GM-CSF) in T cells, which was inhibited by disruption of TNFR2 signaling, demonstrating IL-1ß can function indirectly via the production of TNF. Thus, TNF is not just an effector but also an initiator of inflammatory Th differentiation.


Assuntos
Linfócitos T CD4-Positivos/fisiologia , Inflamação/metabolismo , Receptores Tipo II do Fator de Necrose Tumoral/metabolismo , Transferência Adotiva , Animais , Colite/imunologia , Colite/patologia , Fator Estimulador de Colônias de Granulócitos e Macrófagos/genética , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Camundongos , Camundongos Knockout , Receptores Tipo II do Fator de Necrose Tumoral/genética , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Células Th17 , Fator de Necrose Tumoral alfa/genética
7.
Int J Mol Sci ; 25(5)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38474115

RESUMO

Regulatory T lymphocytes play a critical role in immune regulation and are involved in the aberrant cell elimination by facilitating tumor necrosis factor connection to the TNFR2 receptor, encoded by the TNFRSF1B polymorphic gene. We aimed to examine the effects of single nucleotide variants TNFRSF1B c.587T>G, c.*188A>G, c.*215C>T, and c.*922C>T on the clinicopathological characteristics and survival of cutaneous melanoma (CM) patients. Patients were genotyped using RT-PCR. TNFRSF1B levels were measured using qPCR. Luciferase reporter assay evaluated the interaction of miR-96 and miR-1271 with the 3'-UTR of TNFRSF1B. The c.587TT genotype was more common in patients younger than 54 years old than in older patients. Patients with c.*922CT or TT, c.587TG or GG + c.*922CT or TT genotypes, as well as those with the haplotype TATT, presented a higher risk of tumor progression and death due to the disease effects. Individuals with the c.*922TT genotype had a higher TNFRSF1B expression than those with the CC genotype. miR-1271 had less efficient binding with the 3'-UTR of the T allele when compared with the C allele of the SNV c.*922C>T. Our findings, for the first time, demonstrate that TNFRSF1B c.587T>G and c.*922C>T variants can serve as independent prognostic factors in CM patients.


Assuntos
Melanoma , MicroRNAs , Neoplasias Cutâneas , Humanos , Idoso , Pessoa de Meia-Idade , Predisposição Genética para Doença , Polimorfismo de Nucleotídeo Único , Genótipo , MicroRNAs/genética , Receptores Tipo II do Fator de Necrose Tumoral/genética
8.
J Neuroinflammation ; 20(1): 100, 2023 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-37122019

RESUMO

BACKGROUND: Tumour necrosis factor (TNF) is a pleiotropic cytokine and master regulator of the immune system. It acts through two receptors resulting in often opposing biological effects, which may explain the lack of therapeutic potential obtained so far in multiple sclerosis (MS) with non-receptor-specific anti-TNF therapeutics. Under neuroinflammatory conditions, such as MS, TNF receptor-1 (TNFR1) is believed to mediate the pro-inflammatory activities associated with TNF, whereas TNF receptor-2 (TNFR2) may instead induce anti-inflammatory effects as well as promote remyelination and neuroprotection. In this study, we have investigated the therapeutic potential of blocking TNFR1 whilst simultaneously stimulating TNFR2 in a mouse model of MS. METHODS: Experimental autoimmune encephalomyelitis (EAE) was induced with myelin oligodendrocyte glycoprotein (MOG35-55) in humanized TNFR1 knock-in mice. These were treated with a human-specific TNFR1-selective antagonistic antibody (H398) and a mouse-specific TNFR2 agonist (EHD2-sc-mTNFR2), both in combination and individually. Histopathological analysis of spinal cords was performed to investigate demyelination and inflammatory infiltration, as well as axonal and neuronal degeneration. Retinas were examined for any protective effects on retinal ganglion cell (RGC) degeneration and neuroprotective signalling pathways analysed by Western blotting. RESULTS: TNFR modulation successfully ameliorated symptoms of EAE and reduced demyelination, inflammatory infiltration and axonal degeneration. Furthermore, the combinatorial approach of blocking TNFR1 and stimulating TNFR2 signalling increased RGC survival and promoted the phosphorylation of Akt and NF-κB, both known to mediate neuroprotection. CONCLUSION: These results further support the potential of regulating the balance of TNFR signalling, through the co-modulation of TNFR1 and TNFR2 activity, as a novel therapeutic approach in treating inflammatory demyelinating disease.


Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla , Camundongos , Humanos , Animais , Receptores Tipo I de Fatores de Necrose Tumoral/genética , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Receptores Tipo II do Fator de Necrose Tumoral/genética , Receptores Tipo II do Fator de Necrose Tumoral/metabolismo , Inibidores do Fator de Necrose Tumoral , Encefalomielite Autoimune Experimental/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Anticorpos/uso terapêutico
9.
Ann Rheum Dis ; 82(8): 1076-1090, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37197892

RESUMO

OBJECTIVES: Gut and joint inflammation commonly co-occur in spondyloarthritis (SpA) which strongly restricts therapeutic modalities. The immunobiology underlying differences between gut and joint immune regulation, however, is poorly understood. We therefore assessed the immunoregulatory role of CD4+FOXP3+ regulatory T (Treg) cells in a model of Crohn's-like ileitis and concomitant arthritis. METHODS: RNA-sequencing and flow cytometry was performed on inflamed gut and joint samples and tissue-derived Tregs from tumour necrosis factor (TNF)∆ARE mice. In situ hybridisation of TNF and its receptors (TNFR) was applied to human SpA gut biopsies. Soluble TNFR (sTNFR) levels were measured in serum of mice and patients with SpA and controls. Treg function was explored by in vitro cocultures and in vivo by conditional Treg depletion. RESULTS: Chronic TNF exposure induced several TNF superfamily (TNFSF) members (4-1BBL, TWEAK and TRAIL) in synovium and ileum in a site-specific manner. Elevated TNFR2 messenger RNA levels were noted in TNF∆ARE/+ mice leading to increased sTNFR2 release. Likewise, sTNFR2 levels were higher in patients with SpA with gut inflammation and distinct from inflammatory and healthy controls. Tregs accumulated at both gut and joints of TNF∆ARE mice, yet their TNFR2 expression and suppressive function was significantly lower in synovium versus ileum. In line herewith, synovial and intestinal Tregs displayed a distinct transcriptional profile with tissue-restricted TNFSF receptor and p38MAPK gene expression. CONCLUSIONS: These data point to profound differences in immune-regulation between Crohn's ileitis and peripheral arthritis. Whereas Tregs control ileitis they fail to dampen joint inflammation. Synovial resident Tregs are particularly maladapted to chronic TNF exposure.


Assuntos
Doença de Crohn , Ileíte , Espondilartrite , Humanos , Linfócitos T Reguladores , Receptores Tipo II do Fator de Necrose Tumoral/genética , Fator de Necrose Tumoral alfa , Inflamação/metabolismo , Ileíte/metabolismo , Ileíte/patologia
10.
PLoS Biol ; 18(12): e3000967, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33270628

RESUMO

Tumor necrosis factor-alpha (TNF-α) plays an important pathogenic role in cardiac hypertrophy and heart failure (HF); however, anti-TNF is paradoxically negative in clinical trials and even worsens HF, indicating a possible protective role of TNF-α in HF. TNF-α exists in transmembrane (tmTNF-α) and soluble (sTNF-α) forms. Herein, we found that TNF receptor 1 (TNFR1) knockout (KO) or knockdown (KD) by short hairpin RNA or small interfering RNA (siRNA) significantly alleviated cardiac hypertrophy, heart dysfunction, fibrosis, and inflammation with increased tmTNF-α expression, whereas TNFR2 KO or KD exacerbated the pathological phenomena with increased sTNF-α secretion in transverse aortic constriction (TAC)- and isoproterenol (ISO)-induced cardiac hypertrophy in vivo and in vitro, respectively, indicating the beneficial effects of TNFR2 associated with tmTNF-α. Suppressing TNF-α converting enzyme by TNF-α Protease Inhibitor-1 (TAPI-1) to increase endogenous tmTNF-α expression significantly alleviated TAC-induced cardiac hypertrophy. Importantly, direct addition of exogenous tmTNF-α into cardiomyocytes in vitro significantly reduced ISO-induced cardiac hypertrophy and transcription of the pro-inflammatory cytokines and induced proliferation. The beneficial effects of tmTNF-α were completely blocked by TNFR2 KD in H9C2 cells and TNFR2 KO in primary myocardial cells. Furthermore, we demonstrated that tmTNF-α displayed antihypertrophic and anti-inflammatory effects by activating the AKT pathway and inhibiting the nuclear factor (NF)-κB pathway via TNFR2. Our data suggest that tmTNF-α exerts cardioprotective effects via TNFR2. Specific targeting of tmTNF-α processing, rather than anti-TNF therapy, may be more useful for the treatment of hypertrophy and HF.


Assuntos
Cardiomegalia/metabolismo , Receptores Tipo II do Fator de Necrose Tumoral/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Animais , Apoptose/efeitos dos fármacos , Cardiomegalia/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Miócitos Cardíacos/metabolismo , NF-kappa B/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/genética , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Receptores Tipo II do Fator de Necrose Tumoral/genética , Receptores Tipo II do Fator de Necrose Tumoral/fisiologia , Transdução de Sinais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/fisiologia
11.
Infection ; 51(4): 967-980, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36512270

RESUMO

PURPOSE: BK Polyomavirus (BKPyV) infection manifests as renal inflammation and can cause kidney damage. Tumor necrosis factor-α (TNF-α) is increased in renal inflammation and injury. The aim of this study was to investigate the effect of TNF-α blockade on BKPyV infection. METHODS: Urine specimens from 22 patients with BKPyV-associated nephropathy (BKPyVN) and 35 non-BKPyVN kidney transplant recipients were analyzed. RESULTS: We demonstrated increased urinary levels of TNF-α and its receptors, TNFR1 and TNFR2, in BKPyVN patients. Treating BKPyV-infected human proximal tubular cells (HRPTECs) with TNF-α stimulated the expression of large T antigen and viral capsid protein-1 mRNA and proteins and BKPyV promoter activity. Knockdown of TNFR1 or TNFR2 expression caused a reduction in TNF-α-stimulated viral replication. NF-κB activation induced by overexpression of constitutively active IKK2 significantly increased viral replication and the activity of the BKPyV promoter containing an NF-κB binding site. The addition of a NF-κB inhibitor on BKPyV-infected cells suppressed viral replication. Blockade of TNF-α functionality by etanercept reduced BKPyV-stimulated expression of TNF-α, interleukin-1ß (IL-1ß), IL-6 and IL-8 and suppressed TNF-α-stimulated viral replication. In cultured HRPTECs and THP-1 cells, BKPyV infection led to increased expression of TNF-α, interleukin-1 ß (IL-1ß), IL-6 and TNFR1 and TNFR2 but the stimulated magnitude was far less than that induced by poly(I:C). This may suggest that BKPyV-mediated autocrine effect is not a major source of TNFα. CONCLUSION: TNF-α stimulates BKPyV replication and inhibition of its signal cascade or functionality attenuates its stimulatory effect. Our study provides a therapeutic anti-BKPyV target.


Assuntos
Vírus BK , Infecções por Polyomavirus , Humanos , Vírus BK/genética , Fator de Necrose Tumoral alfa , Receptores Tipo I de Fatores de Necrose Tumoral , Receptores Tipo II do Fator de Necrose Tumoral/genética , NF-kappa B , Interleucina-6 , Infecções por Polyomavirus/metabolismo , Infecções por Polyomavirus/patologia , Inflamação
12.
J Immunol ; 206(8): 1740-1751, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33782090

RESUMO

Regulatory T cells (Tregs) are a subpopulation of lymphocytes that play a role in suppressing and regulating immune responses. Recently, it was suggested that controlling the functions and activities of Tregs might be applicable to the treatment of human diseases such as autoimmune diseases, organ transplant rejection, and graft-versus-host disease. TNF receptor type 2 (TNFR2) is a target molecule that modulates Treg functions. In this study, we investigated the role of TNFR2 signaling in the differentiation and activation of mouse Tregs. We previously reported the generation of a TNFR2-selective agonist TNF mutant, termed R2agoTNF, by using our unique cytokine modification method based on phage display. R2agoTNF activates cell signaling via mouse TNFR2. In this study, we evaluated the efficacy of R2agoTNF for the proliferation and activation of Tregs in mice. R2agoTNF expanded and activated mouse CD4+CD25+ Tregs ex vivo. The structural optimization of R2agoTNF by internal cross-linking or IgG-Fc fusion selectively and effectively enhanced Treg expansion in vivo. Furthermore, the IgG-Fc fusion protein suppressed skin-contact hypersensitivity reactions in mice. TNFR2 agonists are expected to be new Treg expanders.


Assuntos
Doenças Autoimunes , Doença Enxerto-Hospedeiro , Animais , Humanos , Camundongos , Receptores Tipo II do Fator de Necrose Tumoral/genética , Linfócitos T Reguladores , Fator de Necrose Tumoral alfa
13.
J Infect Dis ; 226(5): 778-787, 2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-35294530

RESUMO

BACKGROUND: The impact of genetic variants in the expression of tumor necrosis factor-α (TNF-α) and its receptors in coronavirus disease 2019 (COVID-19) severity has not been previously explored. We evaluated the association of TNF (rs1800629 and rs361525), TNFRSF1A (rs767455 and rs1800693), and TNFRSF1B (rs1061622 and rs3397) variants with COVID-19 severity, assessed as invasive mechanical ventilation (IMV) requirement, and the plasma levels of soluble TNF-α, TNFR1, and TNFR2 in patients with severe COVID-19. METHODS: The genetic study included 1353 patients. Taqman assays were used to assess the genetic variants. ELISA was used to determine soluble TNF-α, TNFR1, and TNFR2 in plasma samples from 334 patients. RESULTS: Patients carrying TT (TNFRSF1B rs3397) exhibited lower PaO2/FiO2 levels than those with CT + CC genotypes. Differences in plasma levels of TNFR1 and TNFR2 were observed according to the genotype of TNFRSF1B rs1061622, TNF rs1800629, and rs361525. According to the studied genetic variants, there were no differences in the soluble TNF-α levels. Higher soluble TNFR1 and TNFR2 levels were detected in patients with COVID-19 requiring IMV. CONCLUSIONS: Genetic variants in TNF and TNFRSFB1 influence the plasma levels of soluble TNFR1 and TNFR2, implicated in COVID-19 severity.


Assuntos
COVID-19 , Receptores Tipo II do Fator de Necrose Tumoral , COVID-19/genética , Genótipo , Humanos , Receptores Tipo I de Fatores de Necrose Tumoral/genética , Receptores Tipo II do Fator de Necrose Tumoral/genética , Fator de Necrose Tumoral alfa/genética
14.
EMBO J ; 37(16)2018 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-29991564

RESUMO

Regulatory T cells (Treg) are negative regulators of the immune response; however, it is poorly understood whether and how Foxp3 transcription is induced and regulated in the periphery during T-cell responses. Using Foxp3-Timer of cell kinetics and activity (Tocky) mice, which report real-time Foxp3 expression, we show that the flux of new Foxp3 expressors and the rate of Foxp3 transcription are increased during inflammation. These persistent dynamics of Foxp3 transcription determine the effector Treg programme and are dependent on a Foxp3 autoregulatory transcriptional circuit. Persistent Foxp3 transcriptional activity controls the expression of coinhibitory molecules, including CTLA-4 and effector Treg signature genes. Using RNA-seq, we identify two groups of surface proteins based on their relationship to the temporal dynamics of Foxp3 transcription, and we show proof of principle for the manipulation of Foxp3 dynamics by immunotherapy: new Foxp3 flux is promoted by anti-TNFRII antibody, and high-frequency Foxp3 expressors are targeted by anti-OX40 antibody. Collectively, our study dissects time-dependent mechanisms behind Foxp3-driven T-cell regulation and establishes the Foxp3-Tocky system as a tool to investigate the mechanisms behind T-cell immunotherapies.


Assuntos
Fatores de Transcrição Forkhead/imunologia , Linfócitos T Reguladores/imunologia , Transcrição Gênica/imunologia , Animais , Anticorpos/farmacologia , Antígeno CTLA-4/genética , Antígeno CTLA-4/imunologia , Fatores de Transcrição Forkhead/genética , Camundongos , Camundongos Transgênicos , Receptores OX40/antagonistas & inibidores , Receptores OX40/genética , Receptores OX40/imunologia , Receptores Tipo II do Fator de Necrose Tumoral/antagonistas & inibidores , Receptores Tipo II do Fator de Necrose Tumoral/genética , Receptores Tipo II do Fator de Necrose Tumoral/imunologia , Linfócitos T Reguladores/citologia , Transcrição Gênica/efeitos dos fármacos , Transcrição Gênica/genética
15.
Eur J Immunol ; 51(5): 1195-1205, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33609401

RESUMO

Tumor Necrosis Factor Receptor 2 (TNFR2) expression is increasingly being linked to tolerogenic immune reactions and cells with suppressor function including a subset of T-regulatory cells. B-regulatory cells play an important role in control of T-cell responses and inflammation. Recently, we described TNFR2 as a marker for IL-10-producing B cells, a hallmark of this cell subset. Here, we demonstrate that proliferation of T cells is reduced in the presence of TNFR2 positive human memory B cells generated with TLR9 ligand, while TNFR2- and TNFR2+CD27- B cells display costimulatory activity. Our data further reveal that IL-10 secretion is characteristic of IgM+ naïve and memory B cells but suppressive activity is not restricted to IL-10: (i) the inhibitory effect of TNFR2+ switched memory B cells was comparable to that exerted by TNFR2+ IgM+ memory B cells although IL-10 secretion levels in the cocultures were lower; (ii) supernatants from TNFR2+ memory B cells failed to suppress T-cell proliferation. Based on our findings, we propose that formation of Breg is a specific characteristic of human memory B cells undergoing terminal differentiation. Our data further corroborate that TNFR2 represents a viable marker for identification of memory B cells with regulatory function.


Assuntos
Linfócitos B/imunologia , Linfócitos B/metabolismo , Regulação da Expressão Gênica , Memória Imunológica , Imunomodulação/genética , Ativação Linfocitária/genética , Ativação Linfocitária/imunologia , Receptores Tipo II do Fator de Necrose Tumoral/genética , Linfócitos B Reguladores/imunologia , Linfócitos B Reguladores/metabolismo , Estudos de Casos e Controles , Comunicação Celular/imunologia , Diferenciação Celular/imunologia , Imunodeficiência de Variável Comum/etiologia , Imunodeficiência de Variável Comum/metabolismo , Citocinas/metabolismo , Humanos , Interleucina-10/metabolismo , Receptores Tipo II do Fator de Necrose Tumoral/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Receptor Toll-Like 9/metabolismo
16.
J Transl Med ; 20(1): 331, 2022 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-35879777

RESUMO

BACKGROUND: The effectiveness of MAPK pathway inhibitors (MAPKi) used to treat patients with BRAF-mutant melanoma is limited by a range of resistance mechanisms, including soluble TNF (solTNF)-mediated NF-kB signaling. solTNF preferentially signals through type-1 TNF receptor (TNFR1), however, it can also bind to TNFR2, a receptor that is primarily expressed on leukocytes. Here, we investigate the TNFR2 expression pattern on human BRAFV600E+ melanomas and its role in solTNF-driven resistance reprogramming to MAPKi. METHODS: Flow cytometry was used to test TNFR1, TNFR2 and CD271 expression on, as well as NF-kB phosphorylation in human BRAF-mutant melanoma. The ability of melanoma cell lines to acquire MAPKi resistance in response to recombinant or macrophage-derived TNF was evaluated using the MTT cytotoxicity assay. Gene editing was implemented to knock out or knock in TNF receptors in melanoma cell lines. Knockout and knock-in cell line variants were employed to assess the intrinsic roles of these receptors in TNF-induced resistance to MAPKi. Multicolor immunofluorescence microscopy was utilized to test TNFR2 expression by melanoma in patients receiving MAPKi therapy. RESULTS: TNFR1 and TNFR2 are co-expressed at various levels on 4/7 BRAFV600E+ melanoma cell lines evaluated in this study. In vitro treatments with solTNF induce MAPKi resistance solely in TNFR2-expressing BRAFV600E+ melanoma cell lines. TNFR1 and TNFR2 knockout and knock-in studies indicate that solTNF-mediated MAPKi resistance in BRAFV600E+ melanomas is predicated on TNFR1 and TNFR2 co-expression, where TNFR1 is the central mediator of NF-kB signaling, while TNFR2 plays an auxiliary role. solTNF-mediated effects are transient and can be abrogated with biologics. Evaluation of patient specimens indicates that TNFR2 is expressed on 50% of primary BRAFV600E+ melanoma cells and that MAPKi therapy may lead to the enrichment of TNFR2-expressing tumor cells. CONCLUSIONS: Our data suggest that TNFR2 is essential to solTNF-induced MAPKi resistance and a possible biomarker to identify melanoma patients that can benefit from solTNF-targeting therapies.


Assuntos
Melanoma , Receptores Tipo II do Fator de Necrose Tumoral , Humanos , Melanoma/tratamento farmacológico , Melanoma/genética , Melanoma/metabolismo , NF-kappa B , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas B-raf/genética , Receptores Tipo I de Fatores de Necrose Tumoral/genética , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Receptores Tipo II do Fator de Necrose Tumoral/genética , Receptores Tipo II do Fator de Necrose Tumoral/metabolismo
17.
Proc Natl Acad Sci U S A ; 116(34): 17045-17050, 2019 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-31391309

RESUMO

Tumor necrosis factor receptor 2 (TNFR2) is a transmembrane receptor that is linked to immune modulation and tissue regeneration. Here, we show that TNFR2 essentially promotes long-term pain resolution independently of sex. Genetic deletion of TNFR2 resulted in impaired neuronal regeneration and chronic nonresolving pain after chronic constriction injury (CCI). Further, pharmacological activation of TNFR2 using the TNFR2 agonist EHD2-sc-mTNFR2 in mice with chronic neuropathic pain promoted long-lasting pain recovery. TNFR2 agonist treatment reduced neuronal injury, alleviated peripheral and central inflammation, and promoted repolarization of central nervous system (CNS)-infiltrating myeloid cells into an antiinflammatory/reparative phenotype. Depletion of regulatory T cells (Tregs) delayed spontaneous pain recovery and abolished the therapeutic effect of EHD2-sc-mTNFR2 This study therefore reveals a function of TNFR2 in neuropathic pain recovery and demonstrates that both TNFR2 signaling and Tregs are essential for pain recovery after CCI. Therefore, therapeutic strategies based on the concept of enhancing TNFR2 signaling could be developed into a nonopioid therapy for the treatment of chronic neuropathic pain.


Assuntos
Dor Crônica/imunologia , Neuralgia/imunologia , Receptores Tipo II do Fator de Necrose Tumoral/imunologia , Transdução de Sinais/imunologia , Linfócitos T Reguladores/imunologia , Animais , Dor Crônica/genética , Dor Crônica/patologia , Dor Crônica/terapia , Feminino , Inflamação/genética , Inflamação/imunologia , Inflamação/patologia , Depleção Linfocítica , Masculino , Camundongos , Camundongos Knockout , Neuralgia/genética , Neuralgia/patologia , Neuralgia/terapia , Receptores Tipo II do Fator de Necrose Tumoral/genética , Transdução de Sinais/genética , Linfócitos T Reguladores/patologia
18.
Artigo em Inglês | MEDLINE | ID: mdl-36244759

RESUMO

BACKGROUND: Tibetans have lived at very high altitudes for thousands of years, and have a distinctive suite of physiological traits that enable them to tolerate environmental hypoxia. Expanding awareness and knowledge of the differences in hematology, hypoxia-associated genes, immune system of people living at different altitudes and from different ethnic groups may provide evidence for the prevention of mountain sickness. METHOD: Ninety-five Han people at mid-altitude, ninety-five Tibetan people at high-altitude and ninety-eight Han people at high-altitude were recruited. Red blood cell parameters, immune cells, the contents of cytokines, hypoxia-associated gene single nucleotide polymorphisms (SNPs) were measured. RESULTS: The values of Hematocrit (HCT), Mean cell volume (MCV) and Mean cell hemoglobin (MCH) in red blood cell, immune cell CD19+ B cell number, the levels of cytokines Erb-B2 receptor tyrosine kinase 3 (ErbB3) and Tumor necrosis factor receptor II (TNF-RII) and the levels of hypoxia-associated factors Hypoxia inducible factor-1α (HIF-1α), Hypoxia inducible factor-2α (HIF-2α) and HIF prolyl 4-hydroxylase 2 (PHD2) were decreased, while the frequencies of SNPs in twenty-six Endothelial PAS domain protein 1 (EPAS1) and Egl-9 family hypoxia inducible factor 1 (EGLN1) were increased in Tibetan people at high-altitude compared with that of Han peoples at high-altitude. Furthermore, compared with mid-altitude individuals, high-altitude individuals showed lower blood cell parameters including Hemoglobin concentration (HGB), HCT, MCV and MCH, higher Mean cell hemoglobin concentration (MCHC), lower immune cells including CD19+ B cells, CD4+ T cells and CD4/CD8 ratio, higher immune cells containing CD8+ T cells and CD16/56NK cells, decreased Growth regulated oncogene alpha (GROa), Macrophage inflammatory protein 1 beta (MIP-1b), Interleukin-8 (IL-8), and increased Thrombomodulin, downregulated hypoxia-associated factors including HIF1α, HIF2α and PHD2, and higher frequency of EGLN1 rs2275279. CONCLUSIONS: These results indicated that biological adaption to hypoxia at high altitude might have been mediated by changes in immune cells, cytokines, and hypoxia-associated genes during the evolutionary history of Tibetan populations. Furthermore, different responses to high altitude were observed in different ethnic groups, which may provide a useful knowledge to improve the protection of high-altitude populations from mountain sickness.


Assuntos
Doença da Altitude , Altitude , Adaptação Biológica , Doença da Altitude/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Linfócitos T CD8-Positivos/metabolismo , Quimiocina CCL4/genética , Hemoglobinas/análise , Humanos , Hipóxia/genética , Hipóxia/metabolismo , Fator 1 Induzível por Hipóxia/genética , Prolina Dioxigenases do Fator Induzível por Hipóxia/genética , Prolina Dioxigenases do Fator Induzível por Hipóxia/metabolismo , Interleucina-8/genética , Polimorfismo de Nucleotídeo Único , Receptor ErbB-2/genética , Receptores Tipo II do Fator de Necrose Tumoral/genética , Trombomodulina/genética , Tibet
19.
Proteins ; 89(11): 1557-1564, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34250652

RESUMO

The neutralization of tumor necrosis factor alpha (TNFα) with biopharmaceuticals is a successful therapy for inflammatory diseases. Currently, one of the main TNFα-antagonists is Etanercept, a dimeric TNF-R2 ectodomain. Considering that TNFα and its receptors are homotrimers, we proposed that a trimeric TNF-R2 ectodomain could be an innovative TNFα-antagonist. Here, the 3cTNFR2 protein was designed by the fusion of the TNF-R2 ectodomain with the collagen XV trimerization domain. 3cTNFR2 was produced in HEK293 cells and purified by immobilized metal affinity chromatography. Monomers, dimers, and trimers of 3cTNFR2 were detected. The interaction 3cTNFR2-TNFα was assessed. By microscale thermophoresis, the KD value for the interaction was 4.17 ± 0.88 nM, and complexes with different molecular weights were detected by size exclusion chromatography-high performance liquid chromatography. Moreover, 3cTNFR2 neutralized the TNFα-induced cytotoxicity totally in vitro. Although more studies are required to evaluate the anti-inflammatory effect, the results suggest that 3cTNFR2 could be a TNFα-antagonist agent.


Assuntos
Anti-Inflamatórios/farmacologia , Colágeno/genética , Endotoxinas/antagonistas & inibidores , Etanercepte/farmacologia , Receptores Tipo II do Fator de Necrose Tumoral/genética , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Anti-Inflamatórios/química , Anti-Inflamatórios/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Colágeno/metabolismo , Endotoxinas/metabolismo , Endotoxinas/toxicidade , Etanercepte/química , Etanercepte/metabolismo , Expressão Gênica , Células HEK293 , Humanos , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Domínios Proteicos , Engenharia de Proteínas/métodos , Multimerização Proteica , Receptores Tipo II do Fator de Necrose Tumoral/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes de Fusão/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/toxicidade
20.
Proteins ; 89(11): 1508-1521, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34219271

RESUMO

Tumor necrosis factor-alpha (TNFα) inhibitors could prevent neurological disorders systemically, but their design generally relies on molecules unable to cross the blood-brain barrier (BBB). This research was aimed to design and characterize a novel TNFα inhibitor based on the angiopeptide-2 as a BBB shuttle molecule fused to the extracellular domain of human TNFα receptor 2 and a mutated vascular endothelial growth factor (VEGF) dimerization domain. This new chimeric protein (MTV) would be able to trigger receptor-mediated transcytosis across the BBB via low-density lipoprotein receptor-related protein-1 (LRP-1) and inhibit the cytotoxic effect of TNFα more efficiently because of its dimeric structure. Stably transformed CHO cells successfully expressed MTV, and its purification by Immobilized-Metal Affinity Chromatography (IMAC) rendered high purity degree. Mutated VEGF domain included in MTV did not show cell proliferation or angiogenic activities measured by scratch and aortic ring assays, which corroborate that the function of this domain is restricted to dimerization. The pairs MTV-TNFα (Kd 279 ± 40.9 nM) and MTV-LRP1 (Kd 399 ± 50.5 nM) showed high affinity by microscale thermophoresis, and a significant increase in cell survival was observed after blocking TNFα with MTV in a cell cytotoxicity assay. Also, the antibody staining in CHOK1 and bEnd3 cells demonstrated the adhesion of MTV to the LRP1 receptor located in the cell membrane. These results provide compelling evidence for the proper functioning of the three main domains of MTV individually, which encourage us to continue the research with this new molecule as a potential candidate for the systemic treatment of neurological disorders.


Assuntos
Anti-Inflamatórios/farmacologia , Endotoxinas/antagonistas & inibidores , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Peptídeos/genética , Receptores Tipo II do Fator de Necrose Tumoral/genética , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Fator A de Crescimento do Endotélio Vascular/genética , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/metabolismo , Barreira Hematoencefálica/metabolismo , Células CHO , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Cricetulus , Células Endoteliais/citologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Endotoxinas/metabolismo , Endotoxinas/toxicidade , Expressão Gênica , Humanos , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Camundongos , Modelos Biológicos , Modelos Moleculares , Peptídeos/metabolismo , Ligação Proteica , Conformação Proteica , Engenharia de Proteínas/métodos , Receptores Tipo II do Fator de Necrose Tumoral/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes de Fusão/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/toxicidade , Fator A de Crescimento do Endotélio Vascular/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa