Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 440
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Hum Mol Genet ; 31(24): 4207-4216, 2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-35899427

RESUMO

Kallmann syndrome (KS) is a congenital disorder characterized by idiopathic hypogonadotropic hypogonadism and olfactory dysfunction. KS is linked to variants in >34 genes, which are scattered across the human genome and show disparate biological functions. Although the genetic basis of KS is well studied, the mechanisms by which disruptions of these diverse genes cause the same outcome of KS are not fully understood. Here we show that disruptions of KS-linked genes affect the same biological processes, indicating convergent molecular mechanisms underlying KS. We carried out machine learning-based predictions and found that KS-linked mutations in heparan sulfate 6-O-sulfotransferase 1 (HS6ST1) are likely loss-of-function mutations. We next disrupted Hs6st1 and another KS-linked gene, fibroblast growth factor receptor 1 (Fgfr1), in mouse neuronal cells and measured transcriptome changes using RNA sequencing. We found that disruptions of Hs6st1 and Fgfr1 altered genes in the same biological processes, including the upregulation of genes in extracellular pathways and the downregulation of genes in chromatin pathways. Moreover, we performed genomics and bioinformatics analyses and found that Hs6st1 and Fgfr1 regulate gene transcription likely via the transcription factor Sox9/Sox10 and the chromatin regulator Chd7, which are also associated with KS. Together, our results demonstrate how different KS-linked genes work coordinately in a convergent signaling pathway to regulate the same biological processes, thus providing new insights into KS.


Assuntos
Hipogonadismo , Síndrome de Kallmann , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos , Sulfotransferases , Animais , Camundongos , Cromatina , Hipogonadismo/genética , Síndrome de Kallmann/genética , Síndrome de Kallmann/metabolismo , Mutação , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética , Sulfotransferases/genética
2.
Reprod Biol Endocrinol ; 21(1): 23, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36859276

RESUMO

BACKGROUND: Kallmann syndrome (KS) is a common type of idiopathic hypogonadotropic hypogonadism. To date, more than 30 genes including ANOS1 and FGFR1 have been identified in different genetic models of KS without affirmatory genotype-phenotype correlation, and novel mutations have been found. METHODS: A total of 35 unrelated patients with clinical features of disorder of sex development were recruited. Custom-panel sequencing or whole-exome sequencing was performed to detect the pathogenic mutations. Sanger sequencing was performed to verify single-nucleotide variants. Copy number variation-sequencing (CNV-seq) was performed to determine CNVs. The pathogenicity of the identified variant was predicted in silico. mRNA transcript analysis and minigene reporter assay were performed to test the effect of the mutation on splicing. RESULTS: ANOS1 gene c.709 T > A and c.711 G > T were evaluated as pathogenic by several commonly used software, and c.1063-2 A > T was verified by transcriptional splicing assay. The c.1063-2 A > T mutation activated a cryptic splice acceptor site downstream of the original splice acceptor site and resulted in an aberrant splicing of the 24-basepair at the 5' end of exon 8, yielding a new transcript with c.1063-1086 deletion. FRFR1 gene c.1835delA was assessed as pathogenic according to the ACMG guideline. The CNV of del(8)(p12p11.22)chr8:g.36140000_38460000del was judged as pathogenic according to the ACMG & ClinGen technical standards. CONCLUSIONS: Herein, we identified three novel ANOS1 mutations and two novel FGFR1 variations in Chinese KS families. In silico prediction and functional experiment evaluated the pathogenesis of ANOS1 mutations. FRFR1 c.1835delA mutation and del(8)(p12p11.22)chr8:g.36140000_38460000del were assessed as pathogenic variations. Therefore, our study expands the spectrum of mutations associated with KS and provides diagnostic evidence for patients who carry the same mutation in the future.


Assuntos
Proteínas da Matriz Extracelular , Síndrome de Kallmann , Proteínas do Tecido Nervoso , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos , Humanos , Variações do Número de Cópias de DNA , Éxons , Síndrome de Kallmann/genética , Mutação , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética , Sítios de Splice de RNA , Proteínas da Matriz Extracelular/genética , Proteínas do Tecido Nervoso/genética
3.
Am J Med Genet A ; 191(3): 831-834, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36454653

RESUMO

Kallmann syndrome (KS) is a rare genetic disease characterized by pubertal failure and olfactory defects. Although many genes associated with KS have been reported, most are rare. Recently, heterozygous inactivating mutations in the neuron-derived neurotrophic factor gene (NDNF) were reported to cause KS. Here, we present a 14-year-old Kurdish boy with KS who has a novel homozygous nonsense c.1251C>A (p.Tyr417Ter) variant in NDNF. The variant was not observed in reference population databases and was predicted to be deleterious. Segregation analysis performed with Sanger sequencing indicated the autosomal recessive inheritance of the clinical phenotype. His heterozygous parents have experienced timely pubertal development and normal reproductive features. This study reported the first homozygous truncating NDNF variant, enabling the direct observation of the clinical consequences of predictively absent NDNF function. These results support the contention that the inactivating mutations in NDNF cause KS, and provide additional evidence for the complex inheritance of KS.


Assuntos
Síndrome de Kallmann , Humanos , Síndrome de Kallmann/genética , Neurônios , Fenótipo , Reprodução , Heterozigoto , Mutação
4.
BMC Endocr Disord ; 23(1): 213, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37798680

RESUMO

BACKGROUND: Idiopathic hypogonadotropic hypogonadism (IHH) is a rare congenital or acquired genetic disorder caused by gonadotropin-releasing hormone (GnRH) deficiency. IHH patients are divided into two major groups, hyposmic or anosmic IHH (Kallmann syndrome) and normosmic IHH (nIHH), according to whether their sense of smell is intact. Here we report a case of novel compound heterozygous mutations in the GNRH1 gene in a 15-year-old male with nIHH. CASE PRESENTATION: The patient presented typical clinical symptoms of delayed testicular development, with testosterone < 3.5 mmol/L and reduced gonadotropin (follicle-stimulating hormone, luteinizing hormone) levels. Two heterozygous variants of the GNRH1 gene were detected, nonsense variant 1: c.85G > T:p.G29* and variant 2: c.1A > G:p.M1V, which disrupted the start codon. CONCLUSIONS: Two GNRH1 mutations responsible for nIHH are identified in this study. Our findings extend the mutational spectrum of GNRH1 by revealing novel causative mutations of nIHH.


Assuntos
Hormônio Liberador de Gonadotropina , Hipogonadismo , Adolescente , Humanos , Masculino , Hormônio Liberador de Gonadotropina/genética , Hipogonadismo/genética , Hipogonadismo/diagnóstico , Síndrome de Kallmann/genética , Mutação , Testosterona/análise
5.
J Med Genet ; 59(2): 105-114, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34667088

RESUMO

SOX10 belongs to a family of 20 SRY (sex-determining region Y)-related high mobility group box-containing (SOX) proteins, most of which contribute to cell type specification and differentiation of various lineages. The first clue that SOX10 is essential for development, especially in the neural crest, came with the discovery that heterozygous mutations occurring within and around SOX10 cause Waardenburg syndrome type 4. Since then, heterozygous mutations have been reported in Waardenburg syndrome type 2 (Waardenburg syndrome type without Hirschsprung disease), PCWH or PCW (peripheral demyelinating neuropathy, central dysmyelination, Waardenburg syndrome, with or without Hirschsprung disease), intestinal manifestations beyond Hirschsprung (ie, chronic intestinal pseudo-obstruction), Kallmann syndrome and cancer. All of these diseases are consistent with the regulatory role of SOX10 in various neural crest derivatives (melanocytes, the enteric nervous system, Schwann cells and olfactory ensheathing cells) and extraneural crest tissues (inner ear, oligodendrocytes). The recent evolution of medical practice in constitutional genetics has led to the identification of SOX10 variants in atypical contexts, such as isolated hearing loss or neurodevelopmental disorders, making them more difficult to classify in the absence of both a typical phenotype and specific expertise. Here, we report novel mutations and review those that have already been published and their functional consequences, along with current understanding of SOX10 function in the affected cell types identified through in vivo and in vitro models. We also discuss research options to increase our understanding of the origin of the observed phenotypic variability and improve the diagnosis and medical care of affected patients.


Assuntos
Desenvolvimento Embrionário/genética , Desenvolvimento Embrionário/fisiologia , Fatores de Transcrição SOXE/genética , Fatores de Transcrição SOXE/fisiologia , Animais , Sistema Nervoso Entérico/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Perda Auditiva/genética , Doença de Hirschsprung/genética , Humanos , Síndrome de Kallmann/genética , Melanócitos/fisiologia , Mutação , Neoplasias/genética , Crista Neural/embriologia , Crista Neural/fisiologia , Fenótipo , Síndrome de Waardenburg/genética
6.
Int J Mol Sci ; 24(8)2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37108593

RESUMO

Congenital hypogonadotropic hypogonadism (cHH)/Kallmann syndrome (KS) is a rare genetic disorder with variable penetrance and a complex inheritance pattern. Consequently, it does not always follow Mendelian laws. More recently, digenic and oligogenic transmission has been recognized in 1.5-15% of cases. We report the results of a clinical and genetic investigation of five unrelated patients with cHH/KS analyzed using a customized gene panel. Patients were diagnosed according to the clinical, hormonal, and radiological criteria of the European Consensus Statement. DNA was analyzed using next-generation sequencing with a customized panel that included 31 genes. When available, first-degree relatives of the probands were also analyzed to assess genotype-phenotype segregation. The consequences of the identified variants on gene function were evaluated by analyzing the conservation of amino acids across species and by using molecular modeling. We found one new pathogenic variant of the CHD7 gene (c.576T>A, p.Tyr1928) and three new variants of unknown significance (VUSs) in IL17RD (c.960G>A, p.Met320Ile), FGF17 (c.208G>A, p.Gly70Arg), and DUSP6 (c.434T>G, p.Leu145Arg). All were present in the heterozygous state. Previously reported heterozygous variants were also found in the PROK2 (c.163del, p.Ile55*), CHD7 (c.c.2750C>T, p.Thr917Met and c.7891C>T, p.Arg2631*), FLRT3 (c.1106C>T, p.Ala369Val), and CCDC103 (c.461A>C, p.His154Pro) genes. Molecular modeling, molecular dynamics, and conservation analyses were performed on three out of the nine variants identified in our patients, namely, FGF17 (p.Gly70Arg), DUSP6 (p.Leu145Arg), and CHD7 p.(Thr917Met). Except for DUSP6, where the L145R variant was shown to disrupt the interaction between ß6 and ß3, needed for extracellular signal-regulated kinase 2 (ERK2) binding and recognition, no significant changes were identified between the wild-types and mutants of the other proteins. We found a new pathogenic variant of the CHD7 gene. The molecular modeling results suggest that the VUS of the DUSP6 (c.434T>G, p.Leu145Arg) gene may play a role in the pathogenesis of cHH. However, our analysis indicates that it is unlikely that the VUSs for the IL17RD (c.960G>A, p.Met320Ile) and FGF17 (c.208G>A, p.Gly70Arg) genes are involved in the pathogenesis of cHH. Functional studies are needed to confirm this hypothesis.


Assuntos
Hipogonadismo , Síndrome de Kallmann , Humanos , Hipogonadismo/genética , Hipogonadismo/diagnóstico , Síndrome de Kallmann/genética , Fenótipo , Heterozigoto , Penetrância , Mutação
7.
Hum Mol Genet ; 29(14): 2435-2450, 2020 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-32620954

RESUMO

Dysfunction of the gonadotropin-releasing hormone (GnRH) axis causes a range of reproductive phenotypes resulting from defects in the specification, migration and/or function of GnRH neurons. To identify additional molecular components of this system, we initiated a systematic genetic interrogation of families with isolated GnRH deficiency (IGD). Here, we report 13 families (12 autosomal dominant and one autosomal recessive) with an anosmic form of IGD (Kallmann syndrome) with loss-of-function mutations in TCF12, a locus also known to cause syndromic and non-syndromic craniosynostosis. We show that loss of tcf12 in zebrafish larvae perturbs GnRH neuronal patterning with concomitant attenuation of the orthologous expression of tcf3a/b, encoding a binding partner of TCF12, and stub1, a gene that is both mutated in other syndromic forms of IGD and maps to a TCF12 affinity network. Finally, we report that restored STUB1 mRNA rescues loss of tcf12 in vivo. Our data extend the mutational landscape of IGD, highlight the genetic links between craniofacial patterning and GnRH dysfunction and begin to assemble the functional network that regulates the development of the GnRH axis.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Hormônio Liberador de Gonadotropina/genética , Síndrome de Kallmann/genética , Ubiquitina-Proteína Ligases/genética , Proteínas de Peixe-Zebra/genética , Adulto , Idoso , Animais , Modelos Animais de Doenças , Feminino , Genes Dominantes/genética , Hormônio Liberador de Gonadotropina/deficiência , Haploinsuficiência/genética , Humanos , Síndrome de Kallmann/patologia , Masculino , Pessoa de Meia-Idade , Mutação/genética , Neurônios/metabolismo , Neurônios/patologia , Fenótipo , Peixe-Zebra/genética
8.
Endocr J ; 69(7): 831-838, 2022 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-35236788

RESUMO

Congenital hypogonadotropic hypogonadism (CHH) is a rare disorder that causes gonadotropin-releasing hormone (GnRH) deficiency and sexual immaturity. CHH may accompany an abnormal sense of smell (Kallmann syndrome, KS) or no such manifestation (normosmic-CHH). This unusual combination of manifestations is explained by the fact that GnRH neurons originate in the olfactory placode and migrate to the forebrain during embryogenesis. We describe the case of a 31-year-old man with normosmic-CHH, who also had obesity, type 2 diabetes and intellectual disability. He was noticed to have sexual immaturity (small testes with no pubic hair) at age 20 years, when diabetic ketoacidosis developed. Basal and GnRH-stimulated levels of LH (1.0→12.0 IU/L) and FSH (1.9→6.1 IU/L) were detectable but low. The results of the T&T olfactometer and the Alinamin test were definitely normal, with an anatomically normal olfactory system on MRI. Sequencing of 22 CHH-related genes was performed, and compound heterozygous PROKR2 variants were identified: one was a previously known loss-of-function variant (p.Trp178Ser) and the other was a nonsense variant (p.Trp212*). Through a literature review, we found 22 patients (including our patient) with CHH due to biallelic PROKR2 variants, which led us to recognize that most of the patients (86%) were diagnosed with KS. Clinical observations in this study indicate that, even though they have CHH, biallelic PROKR2 variant carriers may have a normal olfactory system as well as presumably normal migration of GnRH neurons. This suggests that the PROK2-PROKR2 pathway affects the function of GnRH neurons after their migration.


Assuntos
Diabetes Mellitus Tipo 2 , Hipogonadismo , Síndrome de Kallmann , Receptores Acoplados a Proteínas G , Receptores de Peptídeos , Adulto , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/genética , Hormônio Liberador de Gonadotropina/genética , Heterozigoto , Humanos , Hipogonadismo/genética , Síndrome de Kallmann/diagnóstico , Síndrome de Kallmann/genética , Masculino , Mutação , Receptores Acoplados a Proteínas G/genética , Receptores de Peptídeos/genética , Adulto Jovem
9.
Int J Mol Sci ; 23(8)2022 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-35457241

RESUMO

Congenital hypogonadotropic hypogonadism (CHH) is a rare reproductive endocrine disorder characterized by complete or partial failure of pubertal development and infertility due to deficiency of the gonadotropin-releasing hormone (GnRH). CHH has a significant clinical heterogeneity and can be caused by mutations in over 30 genes. The aim of this study was to investigate the genetic defect in two siblings with CHH. A woman with CHH associated with anosmia and her brother with normosmic CHH were investigated by whole exome sequencing. The genetic studies revealed a novel heterozygous missense mutation in the Fibroblast Growth Factor Receptor 1 (FGFR1) gene (NM_023110.3: c.242T>C, p.Ile81Thr) in the affected siblings and in their unaffected father. The mutation affected a conserved amino acid within the first Ig-like domain (D1) of the protein, was predicted to be pathogenic by structure and sequence-based prediction methods, and was absent in ethnically matched controls. These were consistent with a critical role for the identified missense mutation in the activity of the FGFR1 protein. In conclusion, our identification of a novel missense mutation of the FGFR1 gene associated with a variable expression and incomplete penetrance of CHH extends the known mutational spectrum of this gene and may contribute to the understanding of the pathogenesis of CHH.


Assuntos
Hipogonadismo , Síndrome de Kallmann , Feminino , Humanos , Hipogonadismo/genética , Hipogonadismo/metabolismo , Síndrome de Kallmann/genética , Masculino , Mutação , Mutação de Sentido Incorreto , Portugal , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo
10.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 39(11): 1275-1278, 2022 Nov 10.
Artigo em Zh | MEDLINE | ID: mdl-36317218

RESUMO

OBJECTIVE: To explore the etiology of a patient with Kallmann syndrome (congenital hypogonadism and anosmia) and a 45,X/46,XY karyotype. METHODS: Peripheral venous blood samples were collected from the proband and his parents and subjected to whole exome sequencing. Candidate variants were verified by Sanger sequencing. RESULTS: The proband was found to harbor compound heterozygous variants of the PROKR2 gene, namely c.533G>C (p.W178S) and c.308C>T (p.A103V), which were inherited from his father and mother, respectively. The two variants were respectively predicted to be likely pathogenic and variant of unknown significance, respectively. CONCLUSION: The reduced chromosomal mosaicism might have caused no particular clinical manifestations in this patient. For patients with features of Kallmann syndrome, genetic testing is conducive to early diagnosis and can provide a basis for genetic counseling and clinical treatment.


Assuntos
Hipogonadismo , Síndrome de Kallmann , Humanos , Testes Genéticos , Hipogonadismo/genética , Síndrome de Kallmann/genética , Cariótipo , Mutação , Sequenciamento do Exoma , Cromossomos Humanos X/genética , Cromossomos Humanos Y/genética
11.
Yi Chuan ; 44(12): 1158-1166, 2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36927561

RESUMO

Hypogonadotropic hypogonadism (HH) is a disease defined by dysfunction of the hypothalamic- pituitary-gonadal hormone axis, leading to low sex hormone levels and impaired fertility. HH with anosmia or hyposmia is known as Kallmann syndrome (KS). Waardenburg syndrome (WS) is a rare autosomal dominant genetic disorder characterized by sensorineural hearing loss and abnormal pigmentation. In this report, we collected the clinical data of a patient with hypogonadotropic hypogonadism and congenital hearing loss of unknown cause. The patient had no obvious secondary sexual characteristics development after puberty, and had a heterozygous deletion (at least 419 kb) in 22q13.1 region (Chr.22:38106433-38525560), which covered the SOX10 gene. The abnormalities were not found in gene sequencing analysis of both the parents and sister of the proband. By summarizing and analyzing the characteristics of this case, we further discussed the molecular biological etiological association between HH and WS type 2. This case also enriches the clinical data of subsequent genetic studies, and provides a reference for the diagnosis and treatment of such diseases.


Assuntos
Hipogonadismo , Síndrome de Kallmann , Síndrome de Waardenburg , Humanos , Síndrome de Waardenburg/genética , Síndrome de Waardenburg/complicações , Deleção de Genes , Hipogonadismo/genética , Hipogonadismo/complicações , Síndrome de Kallmann/genética , Síndrome de Kallmann/complicações , Fatores de Transcrição SOXE/genética , Mutação
12.
Yi Chuan ; 44(10): 937-949, 2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36384729

RESUMO

Idiopathic hypogonadotropic hypogonadism (IHH) is a rare endocrine disease characterized by gonadal dysplasia. According to whether the sense of smell is affected, this disorder is classified into Kallmann syndrome (KS) and normosmic isolated hypogonadotropic hypogonadism (nIHH). In this study, we reported a case of nIHH patient and explored the pathogenic mechanism of FGFR1 in nIHH. A FGFR1 variant (c.2008G>A, p.E670K) and a CEP290 variant (c.964G>A, p.D322N) were detected by the whole exome sequencing in this nIHH patient. Bioinformatic analysis revealed that this FGFR1 variant (c.2008G>A) causes structural perturbations in TK2 domain demonstrating that this variant result in FGFR1 loss-of-function and abnormal signaling. The identification of an additional CEP290 variant (c.964G>A) indicated that CEP290 might play a potential role in developmental abnormalities and inhibition of GnRH neuron release. A protein interaction network analysis showed that CEP290 was predicted to interact with FGFR1. In summary, our study identified the potential pathogenic mechanism(s) of the novel FGFR1 variant and indicated that CEP290 might play a role in the GnRH neuron migration route. Our findings expand the mutation spectrum of FGFR1 and CEP290 and provide a reference for clinical diagnosis and treatment of IHH.


Assuntos
Hipogonadismo , Síndrome de Kallmann , Humanos , Hipogonadismo/genética , Hipogonadismo/diagnóstico , Síndrome de Kallmann/genética , Mutação , Hormônio Liberador de Gonadotropina/genética , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética , Antígenos de Neoplasias , Proteínas do Citoesqueleto/genética , Proteínas de Ciclo Celular/genética
13.
J Neurosci ; 40(2): 311-326, 2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31767679

RESUMO

During mammalian development, gonadotropin-releasing-hormone-1 neurons (GnRH-1ns) migrate from the developing vomeronasal organ (VNO) into the brain asserting control of pubertal onset and fertility. Recent data suggest that correct development of the olfactory ensheathing cells (OEC) is imperative for normal GnRH-1 neuronal migration. However, the full ensemble of molecular pathways that regulate OEC development remains to be fully deciphered. Loss-of-function of the transcription factor Gli3 is known to disrupt olfactory development, however, if Gli3 plays a role in GnRH-1 neuronal development is unclear. By analyzing Gli3 extra-toe mutants (Gli3Xt/Xt), we found that Gli3 loss-of-function compromises the onset of achaete-scute family bHLH transcription factor 1 (Ascl-1)+ vomeronasal progenitors and the formation of OEC in the nasal mucosa. Surprisingly, GnRH-1 neurogenesis was intact in Gli3Xt/Xt mice but they displayed significant defects in GnRH-1 neuronal migration. In contrast, Ascl-1null mutants showed reduced neurogenesis for both vomeronasal and GnRH-1ns but less severe defects in OEC development. These observations suggest that Gli3 is critical for OEC development in the nasal mucosa and subsequent GnRH-1 neuronal migration. However, the nonoverlapping phenotypes between Ascl-1 and Gli3 mutants indicate that Ascl-1, while crucial for GnRH-1 neurogenesis, is not required for normal OEC development. Because Kallmann syndrome (KS) is characterized by abnormal GnRH-1ns migration, we examined whole-exome sequencing data from KS subjects. We identified and validated a GLI3 loss-of-function variant in a KS individual. These findings provide new insights into GnRH-1 and OECs development and demonstrate that human GLI3 mutations contribute to KS etiology.SIGNIFICANCE STATEMENT The transcription factor Gli3 is necessary for correct development of the olfactory system. However, if Gli3 plays a role in controlling GnRH-1 neuronal development has not been addressed. We found that Gli3 loss-of-function compromises the onset of Ascl-1+ vomeronasal progenitors, formation of olfactory ensheathing cells in the nasal mucosa, and impairs GnRH-1 neuronal migration to the brain. By analyzing Ascl-1null mutants we dissociated the neurogenic defects observed in Gli3 mutants from lack of olfactory ensheathing cells in the nasal mucosa, moreover, we discovered that Ascl-1 is necessary for GnRH-1 ontogeny. Analyzing human whole-exome sequencing data, we identified a GLI3 loss-of-function variant in a KS individual. Our data suggest that GLI3 is a candidate gene contributing to KS etiology.


Assuntos
Síndrome de Kallmann/genética , Neurogênese/fisiologia , Neuroglia/fisiologia , Neurônios/fisiologia , Órgão Vomeronasal/fisiologia , Proteína Gli3 com Dedos de Zinco/metabolismo , Animais , Movimento Celular/fisiologia , Feminino , Hormônio Liberador de Gonadotropina/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Bulbo Olfatório/crescimento & desenvolvimento , Mucosa Olfatória/metabolismo , Precursores de Proteínas/metabolismo , Proteína Gli3 com Dedos de Zinco/genética
14.
Hum Genet ; 140(1): 77-111, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32200437

RESUMO

A genetic basis of congenital isolated hypogonadotropic hypogonadism (CHH) can be defined in almost 50% of cases, albeit not necessarily the complete genetic basis. Next-generation sequencing (NGS) techniques have led to the discovery of a great number of loci, each of which has illuminated our understanding of human gonadotropin-releasing hormone (GnRH) neurons, either in respect of their embryonic development or their neuroendocrine regulation as the "pilot light" of human reproduction. However, because each new gene linked to CHH only seems to underpin another small percentage of total patient cases, we are still far from achieving a comprehensive understanding of the genetic basis of CHH. Patients have generally not benefited from advances in genetics in respect of novel therapies. In most cases, even genetic counselling is limited by issues of apparent variability in expressivity and penetrance that are likely underpinned by oligogenicity in respect of known and unknown genes. Robust genotype-phenotype relationships can generally only be established for individuals who are homozygous, hemizygous or compound heterozygotes for the same gene of variant alleles that are predicted to be deleterious. While certain genes are purely associated with normosmic CHH (nCHH) some purely with the anosmic form (Kallmann syndrome-KS), other genes can be associated with both nCHH and KS-sometimes even within the same kindred. Even though the anticipated genetic overlap between CHH and constitutional delay in growth and puberty (CDGP) has not materialised, previously unanticipated genetic relationships have emerged, comprising conditions of combined (or multiple) pituitary hormone deficiency (CPHD), hypothalamic amenorrhea (HA) and CHARGE syndrome. In this review, we report the current evidence in relation to phenotype and genetic peculiarities regarding 60 genes whose loss-of-function variants can disrupt the central regulation of reproduction at many levels: impairing GnRH neurons migration, differentiation or activation; disrupting neuroendocrine control of GnRH secretion; preventing GnRH neuron migration or function and/or gonadotropin secretion and action.


Assuntos
Hipogonadismo/congênito , Hipogonadismo/genética , Alelos , Animais , Estudos de Associação Genética/métodos , Hormônio Liberador de Gonadotropina/metabolismo , Humanos , Síndrome de Kallmann/genética , Mutação com Perda de Função/genética , Células Neuroendócrinas/metabolismo , Fenótipo
15.
Clin Endocrinol (Oxf) ; 95(1): 153-162, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33548149

RESUMO

OBJECTIVE: We aimed to analyse FGFR1 rare variants in a series of Chinese congenital hypogonadotropic hypogonadism (CHH) patients. In addition, we intended to understand the clinical characteristics and the response to treatment of CHH patients with FGFR1 rare variants. PATIENTS AND METHODS: A total of 357 CHH patients were recruited at Peking Union Medical College Hospital. We used Sanger sequencing to analyse FGFR1 gene. In silico analysis was carried out to study the pathogenicity of novel missense variants. The clinical, endocrinological and therapeutic effects from patients carrying FGFR1 rare variants were analysed retrospectively. RESULTS: Thimissense mutations.rty patients in this series were found to harbour 29 FGFR1 rare variants, with 8 recurrent and 21 novel variants. After comprehensive analysis, 18 out of 21 novel variants were classified as likely pathogenic (LP) ones. These variants are widely spread throughout the FGFR1 gene and almost all FGFR1 functional domains, which exhibited no hot spot. Cryptorchidism, cleft palate and dental abnormality incidence in this CHH series that possessed FGFR1 LP variants were approximately 38.5%, 7.6% and 3.8%, respectively. Among patients who accepted the fertility-promoting treatment, 8 out of 10 patients succeeded in spermatogenesis. CONCLUSIONS: Eighteen novel LP variants were found to expand the spectrum of FGFR1 rare variants. In CHH patients possessing FGFR1 variants, we found that the rate of spermatogenesis was high following fertility-promoting therapy and the existence of cryptorchidism may represent the underlying factors which affect spermatogenesis.


Assuntos
Hipogonadismo , Síndrome de Kallmann , Humanos , Hipogonadismo/tratamento farmacológico , Hipogonadismo/genética , Síndrome de Kallmann/tratamento farmacológico , Síndrome de Kallmann/genética , Masculino , Mutação , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética , Estudos Retrospectivos , Espermatogênese
16.
Am J Med Genet A ; 185(3): 889-893, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33369061

RESUMO

The semaphorin protein family is a diverse set of extracellular signaling proteins that perform fundamental roles in the development and operation of numerous biological systems, notably the nervous, musculoskeletal, cardiovascular, endocrine, and reproductive systems. Recently, recessive loss-of-function (LoF) variants in SEMA3A (semaphorin 3A) have been shown to result in a recognizable syndrome characterized by short stature, skeletal abnormalities, congenital heart defects, and variable additional anomalies. Here, we describe the clinical and molecular characterization of a female patient presenting with skeletal dysplasia, hypogonadotropic hypogonadism (HH), and anosmia who harbors a nonsense variant c.1633C>T (p.Arg555*) and a deletion of exons 15, 16, and 17 in SEMA3A in the compound heterozygous state. These variants were identified through next-generation sequencing analysis of a panel of 26 genes known to be associated with HH/Kallmann syndrome. Our findings further substantiate the notion that biallelic LoF SEMA3A variants cause a syndromic form of short stature and expand the phenotypic spectrum associated with this condition to include features of Kallmann syndrome.


Assuntos
Anormalidades Múltiplas/genética , Anosmia/genética , Códon sem Sentido , Nanismo/genética , Cardiopatias Congênitas/genética , Hipogonadismo/genética , Mutação com Perda de Função , Semaforina-3A/genética , Alelos , Pé Torto Equinovaro/genética , Códon sem Sentido/genética , Feminino , Heterozigoto , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Recém-Nascido , Síndrome de Kallmann/genética , Hipotonia Muscular/genética , Pectus Carinatum/genética , Fenótipo , Puberdade Tardia/genética , Escoliose/genética , Semaforina-3A/deficiência , Síndrome
17.
Neuroendocrinology ; 111(1-2): 99-114, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32074614

RESUMO

BACKGROUND: Two loci (CHD7 and SOX10) underlying Kallmann syndrome (KS) were discovered through clinical and genetic analysis of CHARGE and Waardenburg syndromes, conditions that include congenital anosmia caused by olfactory bulb (CA/OBs) defects and congenital hypogonadotropic hypogonadism (CHH). We hypothesized that other candidate genes for KS could be discovered by analyzing rare syndromes presenting with these signs. Study Design, Size, Duration: We first investigated a family with Gorlin-Goltz syndrome (GGS) in which affected members exhibited clinical signs suggesting KS. Participants/Materials, Methods: Proband and family members underwent detailed clinical assessment. The proband received detailed neuroendocrine evaluation. Genetic analyses included sequencing the PTCH1 gene at diagnosis, followed by exome analyses of causative or candidate KS/CHH genes, in order to exclude contribution to the phenotypes of additional mutations. Exome analyses in additional 124 patients with KS/CHH probands with no additional GGS signs. RESULTS: The proband exhibited CA, absent OBs on magnetic resonance imaging, and had CHH with unilateral cryptorchidism, consistent with KS. Pulsatile Gonadotropin-releasing hormone (GnRH) therapy normalized serum gonadotropins and increased testosterone levels, supporting GnRH deficiency. Genetic studies revealed 3 affected family members harbor a novel mutation of PTCH1 (c.838G> T; p.Glu280*). This unreported nonsense deleterious mutation results in either a putative truncated Ptch1 protein or in an absence of translated Ptch1 protein related to nonsense mediated messenger RNA decay. This heterozygous mutation cosegregates in the pedigree with GGS and CA with OBs aplasia/hypoplasia and with CHH in the proband suggesting a genetic linkage and an autosomal dominant mode of inheritance. No pathogenic rare variants in other KS/CHH genes cosegregated with these phenotypes. In additional 124 KS/CHH patients, 3 additional heterozygous, rare missense variants were found and predicted in silico to be damaging: p.Ser1203Arg, p.Arg1192Ser, and p.Ile108Met. CONCLUSION: This family suggests that the 2 main signs of KS can be included in GGS associated with PTCH1 mutations. Our data combined with mice models suggest that PTCH1 could be a novel candidate gene for KS/CHH and reinforce the role of the Hedgehog signaling pathway in pathophysiology of KS and GnRH neuron migration.


Assuntos
Anosmia/genética , Síndrome do Nevo Basocelular/diagnóstico , Síndrome do Nevo Basocelular/genética , Hipogonadismo/genética , Síndrome de Kallmann/diagnóstico , Síndrome de Kallmann/genética , Receptor Patched-1/genética , Adulto , Estudos de Coortes , Feminino , Humanos , Masculino , Mutação
18.
Cell Biol Int ; 45(2): 404-410, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33140874

RESUMO

Kallmann syndrome (KS) is a rare human genetic disorder characterized by hypogonadotropic hypogonadism with the reduction or absence of olfactory sense. Mutations in multiple genes, including chemokine prokineticin-2 (PROK2), are considered to contribute to the abnormal migration of gonadotropin-releasing hormone neurons in the embryonic stage. However, the mechanisms of the different inheritance modes of KS have not been comprehensively determined. In this article, we present the case of one KS patient with the same mutation in PROK2 (c.223-4C>A) as his mother. RNA sequencing analysis of his leukocytes showed a new transcript of PROK2, which contained a partial intron (192 bp) compared to those of his parents. Furthermore, we observed that hsa-miR-3195 was expressed at low levels in his and his father's sera compared to his mother's. Unexpectedly, hsa-miR-3195 was also identified to specifically target the 192 bp intron of the aberrant PROK2 transcript of this patient. We determined that high expression of hsa-miR-3195 could efficiently target aberrant PROK2 and stabilize the normal function of PROK2 in vitro, which provided a probable explanation for the different phenotypes of the patient and his mother with the same genotype.


Assuntos
Hormônios Gastrointestinais/genética , Síndrome de Kallmann/genética , Neuropeptídeos/genética , Adolescente , Feminino , Genótipo , Células HEK293 , Humanos , Masculino , MicroRNAs/metabolismo , Mutação , Linhagem , Fenótipo , Transcriptoma
19.
BMC Endocr Disord ; 21(1): 193, 2021 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-34563184

RESUMO

BACKGROUND: Variants of chromodomain helicase DNA binding protein 7 (CHD7) gene are commonly associated with Kallmann syndrome (KS) and account for 5-6% of idiopathic hypogonadotropic hypogonadism (IHH) cases. Here we report a novel mutation of CHD7 gene in a patient with KS, which may contribute to the better understanding of KS. CASE PRESENTATION: A 29-year-old male patient with KS and a chief complaint of delayed puberty for 13 years (Tanner B Stage< 4) was admitted to the Department of Endocrinology of the First Affiliated Hospital of Zhejiang University (Hangzhou, China) in September 2019. Dual-energy X-ray absorptiometry (DEXA) showed low bone density in both lumbar spine (L1 ~ L5 mean Z-score - 3.0) and femoral neck (Z-score - 2.7). Dynamic contrast-enhanced magnetic resonance imaging (MRI) of pituitary and contrast-enhanced computed tomography (CT) showed no abnormal findings. Ophthalmological evaluation showed that his both eyes showed exotropia, and no sight loss was noted. Heterozygous c.1619G > T mutation of TCD7 gene (p.G4856V) was detected, whereas none of his family members had this mutation. Human chorionic gonadotropin (HCG) and human menopausal gonadotropin (HMG) were injected for three times/week to treat idiopathic hypogonadotropic hypogonadism (IHH). After several months of therapy, the patient's health condition improved. His testicles became larger, and his secondary sexual characteristics improved after treatment. CONCLUSION: Exploration of the novel splice-site mutation of CHD7 may further our current understanding of KS.


Assuntos
DNA Helicases/genética , Proteínas de Ligação a DNA/genética , Síndrome de Kallmann/genética , Mutação de Sentido Incorreto , Adulto , China , Análise Mutacional de DNA , Heterozigoto , Humanos , Hipogonadismo/diagnóstico , Hipogonadismo/genética , Hipogonadismo/terapia , Síndrome de Kallmann/complicações , Síndrome de Kallmann/diagnóstico , Síndrome de Kallmann/terapia , Imageamento por Ressonância Magnética , Masculino , Polimorfismo de Nucleotídeo Único , Puberdade Tardia/diagnóstico , Puberdade Tardia/etiologia , Puberdade Tardia/genética , Puberdade Tardia/terapia , Tomografia Computadorizada por Raios X
20.
Metab Brain Dis ; 36(3): 447-452, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33411215

RESUMO

Cobalamin C (cblC) disease and Kallmann syndrome (KS) are rare hereditary diseases. To date, no report has described the coexistence of those two genetic disorders in the same patient, or an association between them. We report the case of a 23-year-old woman with cblC defect and KS. She first presented mild memory problems in puberty, which worsened in adulthood to progressive memory loss accompanied by slow and unsteady walking, slow response, inattention, cognitive impairment, insomnia, no sense of smell, and the lack of spontaneous puberty. Laboratory tests revealed gonadotropin deficiency, a low estrogen level, and remarkably elevated serum homocysteine and serum and urine organic acid levels. Whole-exome sequencing detected compound heterozygous variants in MMACHC [c.398_399del (p.Gln133Argfs*4) and c.482G > A (p.Arg161Gln)] and heterozygous variants in PROKR2 [c.337T > C (p.Tyr113His)]. Thus, clinical and genetic examinations confirmed the cblC disease and KS diagnoses. This report on coexisting cblC disease and KS caused by different pathogenic genes in a single patient enriches the clinical research on these two rare genetic diseases.


Assuntos
Síndrome de Kallmann/genética , Mutação , Oxirredutases/genética , Receptores Acoplados a Proteínas G/genética , Receptores de Peptídeos/genética , Vitamina B 12 , Feminino , Humanos , Linhagem , Sequenciamento do Exoma , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa