RESUMO
Hibernating mammals survive hypothermia (<10°C) without injury, a remarkable feat of cellular preservation that bears significance for potential medical applications. However, mechanisms imparting cold resistance, such as cytoskeleton stability, remain elusive. Using the first iPSC line from a hibernating mammal (13-lined ground squirrel), we uncovered cellular pathways critical for cold tolerance. Comparison between human and ground squirrel iPSC-derived neurons revealed differential mitochondrial and protein quality control responses to cold. In human iPSC-neurons, cold triggered mitochondrial stress, resulting in reactive oxygen species overproduction and lysosomal membrane permeabilization, contributing to microtubule destruction. Manipulations of these pathways endowed microtubule cold stability upon human iPSC-neurons and rat (a non-hibernator) retina, preserving its light responsiveness after prolonged cold exposure. Furthermore, these treatments significantly improved microtubule integrity in cold-stored kidneys, demonstrating the potential for prolonging shelf-life of organ transplants. Thus, ground squirrel iPSCs offer a unique platform for bringing cold-adaptive strategies from hibernators to humans in clinical applications. VIDEO ABSTRACT.
Assuntos
Adaptação Fisiológica , Células-Tronco Pluripotentes Induzidas/metabolismo , Neurônios/metabolismo , Animais , Diferenciação Celular , Temperatura Baixa , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Rim/efeitos dos fármacos , Rim/metabolismo , Lisossomos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Neurônios/citologia , Estresse Oxidativo , Inibidores de Proteases/farmacologia , Ratos , Espécies Reativas de Oxigênio/metabolismo , Retina/metabolismo , Sciuridae , Transcriptoma , Tubulina (Proteína)/química , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismoRESUMO
Thirteen-lined ground squirrels (TLGSs) are obligate hibernators that cycle between torpor (low metabolic rate and body temperature) and interbout euthermia (IBE; typical euthermic body temperature and metabolism) from late autumn to spring. Many physiological changes occur throughout hibernation, including a reduction in liver mitochondrial metabolism during torpor, which is reversed during arousal to interbout euthermia. Nuclear-encoded microRNA (miRNA, small posttranscriptional regulator molecules) differ in abundance throughout TLGS hibernation and have been shown to regulate mitochondrial gene expression in mammalian cell culture (where they are referred to as mitomiRs). This study characterized differences in mitomiR profiles from TLGS liver mitochondria isolated during summer, torpor, and IBE, and predicted their mitochondrial targets. Using small RNA sequencing, differentially abundant mitomiRs were identified between hibernation states, and using quantitative PCR analysis, we quantified the expression of predicted mitochondrial mRNA targets. Most differences in mitomiR abundances were seasonal (i.e., between summer and winter) with only one mitomiR differentially abundant between IBE and torpor. Multiple factor analysis (MFA) revealed three clusters divided by hibernation states, where clustering was predominantly driven by mitomiR abundances. Nine of these differentially abundant mitomiRs had predicted mitochondrial RNA targets, including subunits of electron transfer system complexes I and IV, 12S rRNA, and two tRNAs. Overall, mitomiRs were predicted to suppress the expression of their mitochondrial targets and may have some involvement in regulating protein translation in mitochondria. This study found differences in mitomiR abundances between seasons and hibernation states of TLGS and suggests potential mechanisms for regulating the mitochondrial electron transfer system.NEW & NOTEWORTHY During the hibernation season, thirteen-lined ground squirrels periodically increase metabolism remarkably between torpor and interbout euthermia (IBE). This process involves rapid reactivation of mitochondrial respiration. We predicted that mitochondrial microRNA (mitomiRs) might be altered during this response. We found that the abundance of 38 liver mitomiRs differs based on hibernation state (summer, IBE, and torpor). Small RNA sequencing identified mitomiR profiles, including some mitomiRs that are predicted to bind to mitochondrial RNAs.
Assuntos
Hibernação , MicroRNAs , Sciuridae , Animais , Sciuridae/genética , Hibernação/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Estações do Ano , Torpor/genética , Mitocôndrias/genética , Mitocôndrias/metabolismo , Mitocôndrias Hepáticas/metabolismo , Mitocôndrias Hepáticas/genéticaRESUMO
The gut microbiome is essential for maintaining organismal health. Gut microbiota may be disrupted through external factors like dietary change, which can lead to gut inflammation, resulting in obesity. Hibernating mammals develop low-grade gut inflammation when they accumulate fat deposits in preparation for hibernation, making them useful models for studying the relationship between the microbiome, inflammation, and weight gain. Nonsteroidal anti-inflammatory drugs and steroids are commonly used in humans to target gut inflammation, but how these drugs affect the gut microbiome and its stability is unclear. We investigated the effect of the glucocorticoid drug budesonide on the gut microbiome and cytokine levels of an obligate hibernator, the 13-lined ground squirrel, during the fattening season. We used 16S rRNA gene sequencing to characterize bacterial communities in the lumen and mucosa of the cecum and colon and measured proinflammatory [tumor necrosis factor-α (TNF-α)/interleukin 6 (IL-6)] and anti-inflammatory (IL-10) cytokine levels. Budesonide affected the microbiome only in the cecum lumen, where bacterial diversity was higher in the control group, and communities significantly differed between treatments. Across gut sections, Marvinbryantia and Enterococcus were significantly higher in the budesonide group, whereas Sarcina was higher in the control group. TNF-α and IL-6 levels were higher in control squirrels compared with the budesonide group, but there was no difference in IL-10 levels. Overall, budesonide treatment affected the microbial community and diversity of 13-lined ground squirrels in the cecum lumen. Our study presents another step toward developing ground squirrels as a model for studying the interaction between the microbiota and host inflammation.NEW & NOTEWORTHY Disruptions of gut microbiota can lead to inflammation, resulting in weight gain. Inflammation can be treated with budesonide, but how budesonide affects gut microbiota is unclear. Thirteen-lined ground squirrels experience low-grade gut inflammation during prehibernation fattening, which compares with human inflammation-weight gain mechanisms. We showed that budesonide treatment decreased microbiome diversity and lead to a shift in community in the cecum lumen. Our study supports developing ground squirrels as a model for studying microbiome-inflammation interactions.
Assuntos
Anti-Inflamatórios , Budesonida , Citocinas , Microbioma Gastrointestinal , Hibernação , Sciuridae , Animais , Sciuridae/microbiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Anti-Inflamatórios/farmacologia , Citocinas/metabolismo , Budesonida/farmacologia , RNA Ribossômico 16S/genética , Ceco/microbiologia , Ceco/efeitos dos fármacos , Inflamação , Bactérias/efeitos dos fármacos , Bactérias/genética , Bactérias/classificaçãoRESUMO
Interactions among pathogen genotypes that vary in host specificity may affect overall transmission dynamics in multi-host systems. Borrelia burgdorferi, a bacterium that causes Lyme disease, is typically transmitted among wildlife by Ixodes ticks. Despite the existence of many alleles of B. burgdorferi's sensu stricto outer surface protein C (ospC) gene, most human infections are caused by a small number of ospC alleles ["human infectious alleles" (HIAs)], suggesting variation in host specificity associated with ospC. To characterize the wildlife host association of B. burgdorferi's ospC alleles, we used metagenomics to sequence ospC alleles from 68 infected individuals belonging to eight mammalian species trapped at three sites in suburban New Brunswick, New Jersey (USA). We found that multiple allele ("mixed") infections were common. HIAs were most common in mice (Peromyscus spp.) and only one HIA was detected at a site where mice were rarely captured. ospC allele U was exclusively found in chipmunks (Tamias striatus), and although a significant number of different alleles were observed in chipmunks, including HIAs, allele U never co-occurred with other alleles in mixed infections. Our results suggest that allele U may be excluding other alleles, thereby reducing the capacity of chipmunks to act as reservoirs for HIAs.
Assuntos
Borrelia burgdorferi , Borrelia , Coinfecção , Ixodes , Doença de Lyme , Animais , Humanos , Borrelia burgdorferi/genética , Borrelia/genética , Alelos , Doença de Lyme/microbiologia , Ixodes/genética , Ixodes/microbiologia , Antígenos de Bactérias/genética , Proteínas da Membrana Bacteriana Externa/genética , Sciuridae/genética , Especificidade de HospedeiroRESUMO
Early-life adversity, even when transient, can have lasting effects on individual phenotypes and reduce lifespan across species. If these effects can be mitigated by a high-quality later-life environment, then differences in future resources may explain variable resilience to early-life adversity. Using data from over 1000 wild North American red squirrels, we tested the hypothesis that the costs of early-life adversity for adult lifespan could be offset by later-life food abundance. We identified six adversities that reduced juvenile survival in the first year of life, though only one-birth date-had continued independent effects on adult lifespan. We then built a weighted early-life adversity (wELA) index integrating the sum of adversities and their effect sizes. Greater weighted early-life adversity predicted shorter adult lifespans in males and females, but a naturally occurring food boom in the second year of life ameliorated this effect. Experimental food supplementation did not replicate this pattern, despite increasing lifespan, indicating that the buffering effect of a future food boom may hinge on more than an increase in available calories. Our results suggest a non-deterministic role of early-life conditions for later-life phenotype, highlighting the importance of evaluating the consequences of early-life adversity in the context of an animal's entire life course.
Assuntos
Longevidade , Sciuridae , Animais , Masculino , Feminino , Sciuridae/fisiologiaRESUMO
Aphagic hibernators such as the golden-mantled ground squirrel (GMGS; Callospermophilus lateralis) can fast for months and exhibit profound seasonal fluctuations in body weight, food intake, and behavior. Brain-derived neurotrophic factor (BDNF) regulates cellular and systemic metabolism via mechanisms that are conserved across mammalian species. In this study, we characterized regional changes in BDNF with hibernation, hypothermia, and seasonal cycle in GMGS. Analysis of BDNF protein concentrations by ELISA revealed overlapping seasonal patterns in the hippocampus and hypothalamus, where BDNF levels were highest in summer and lowest in winter. BDNF is the primary ligand for receptor tyrosine kinase B (TrkB), and BDNF/TrkB signaling in the brain potently regulates energy expenditure. To examine the functional relevance of seasonal variation in BDNF, hibernating animals were injected with the small molecule TrkB agonist 7,8-dihydroxyflavone (DHF) daily for 2 wk. When compared with vehicle, DHF-treated animals exhibited fewer torpor bouts and shorter bout durations. These results suggest that activating BDNF/TrkB disrupts hibernation and raise intriguing questions related to the role of BDNF as a potential regulatory mechanism or downstream response to seasonal changes in body temperature and environment.NEW & NOTEWORTHY Golden-mantled ground squirrels exhibit dramatic seasonal fluctuations in metabolism and can fast for months while hibernating. Brain-derived neurotrophic factor is an essential determinant of cellular and systemic metabolism, and in this study, we characterized seasonal fluctuations in BDNF expression and then administered the small molecule BDNF mimetic 7,8-dihydroxyflavone (DHF) in hibernating squirrels. The results indicate that activating BDNF/TrkB signaling disrupts hibernation, with implications for synaptic homeostasis in prolonged hypometabolic states.
Assuntos
Hibernação , Animais , Hibernação/fisiologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Estações do Ano , Temperatura Corporal/fisiologia , Sciuridae/metabolismoRESUMO
Urbanization is a persistent and widespread driver of global environmental change, potentially shaping evolutionary processes due to genetic drift and reduced gene flow in cities induced by habitat fragmentation and small population sizes. We tested this prediction for the eastern grey squirrel (Sciurus carolinensis), a common and conspicuous forest-dwelling rodent, by obtaining 44K SNPs using reduced representation sequencing (ddRAD) for 403 individuals sampled across the species' native range in eastern North America. We observed moderate levels of genetic diversity, low levels of inbreeding, and only a modest signal of isolation-by-distance. Clustering and migration analyses show that estimated levels of migration and genetic connectivity were higher than expected across cities and forested areas, specifically within the eastern portion of the species' range dominated by urbanization, and genetic connectivity was less than expected within the western range where the landscape is fragmented by agriculture. Landscape genetic methods revealed greater gene flow among individual squirrels in forested regions, which likely provide abundant food and shelter for squirrels. Although gene flow appears to be higher in areas with more tree cover, only slight discontinuities in gene flow suggest eastern grey squirrels have maintained connected populations across urban areas in all but the most heavily fragmented agricultural landscapes. Our results suggest urbanization shapes biological evolution in wildlife species depending strongly on the composition and habitability of the landscape matrix surrounding urban areas.
Assuntos
Animais Selvagens , Metagenômica , Animais , Humanos , População Urbana , Ecossistema , Sciuridae/genéticaRESUMO
Previous efforts to reconstruct evolutionary history of Palearctic ground squirrels within the genus Spermophilus have primarily relied on a single mitochondrial marker for phylogenetic data. In this study, we present the first phylogeny with comprehensive taxon sampling of Spermophilus via a conventional multilocus approach utilizing five mitochondrial and five nuclear markers. Through application of the multispecies coalescent model, we constructed a species tree revealing four distinct clades that diverged during the Late Miocene. These clades are 1) S. alaschanicus and S. dauricus from East Asia; 2) S. musicus and S. pygmaeus from East Europe and northwestern Central Asia; 3) the subgenus Colobotis found across Central Asia and its adjacent regions and encompassing S. brevicauda, S. erythrogenys, S. fulvus, S. major, S. pallidicauda, S. ralli, S. relictus, S. selevini, and S. vorontsovi sp. nov.; and 4) a Central/Eastern Europe and Asia Minor clade comprising S. citellus, S. taurensis, S. xanthoprymnus, S. suslicus, and S. odessanus. The latter clade lacked strong support owing to uncertainty of taxonomic placement of S. odessanus and S. suslicus. Resolving relationships within the subgenus Colobotis, which radiated rapidly, remains challenging likely because of incomplete lineage sorting and introgressive hybridization. Most of modern Spermophilus species diversified during the Early-Middle Pleistocene (2.2-1.0 million years ago). We propose a revised taxonomic classification for the genus Spermophilus by recognizing 18 species including a newly identified one (S. vorontsovi sp. nov.), which is found only in a limited area in the southeast of West Siberia. Employing genome-wide single-nucleotide polymorphism genotyping, we substantiated the role of the Ob River as a major barrier ensuring robust isolation of this taxon from S. erythrogenys. Despite its inherent limitations, the traditional multilocus approach remains a valuable tool for resolving relationships and can provide important insights into otherwise poorly understood groups. It is imperative to recognize that additional efforts are needed to definitively determine phylogenetic relationships between certain species of Palearctic ground squirrels.
Assuntos
Introgressão Genética , Sciuridae , Animais , Sibéria , Filogenia , Sciuridae/genética , ÁsiaRESUMO
Anomaluromorpha is a particularly puzzling suborder of Rodentia. Endemic to Africa, this clade includes the extant genera Idiurus, Anomalurus, Zenkerella, and Pedetes. These rodents present an hystricomorphous condition of the skull, characterized by a large infraorbital foramen, which evolved independently within the mouse-related clade over a span of approximately 57 million years. They exhibit a high disparity in craniomandibular and dental morphology that has kept their phylogenetic affinities disputed for a long time. Given the past significance of masticatory morphotypes in establishing the classification of Rodentia, we propose to explore variations in the masticatory apparatus of Anomaluromorpha in order to evaluate whether its related features can offer additional data for systematics and contribute to our understanding of the complexity of hystricomorphy. In order to do so, we used traditional dissection and diffusible iodine-based contrast-enhanced computed tomography (diceCT) to accurately describe and compare the anatomy of the specimens. We found that the muscle morphology displays clear differentiation among each anomaluromorph taxonomic unit. Specifically, the masseteric complex of Anomaluromorpha exhibits distinctive synapomorphies such as the infraorbital part of the zygomaticomandibularis muscle being separated into a rostral and orbital part and an absence of a posterior part of the zygomaticomandibularis. Additionally, the orbital portion of the infraorbital part originates from a well-marked ridge and fossa at the level of its area of origin on the anteromedial wall of the orbital cavity, a feature that is absent in other members of the mouse-related clade. This evident bony feature, among others, is strongly associated with muscular anatomy and can contribute to ascertaining the taxonomic status of extinct representatives of the clade. Finally, we showed that the hystricomorphy of Anomaluromorpha largely differs from those of Ctenohystrica and Dipodoidea and that the definition of this morphotype is complex and cannot be reduced simply to the size of the opening of the infraorbital foramen.
Assuntos
Evolução Biológica , Músculos da Mastigação , Animais , Músculos da Mastigação/anatomia & histologia , Sciuridae/anatomia & histologia , Filogenia , Crânio/anatomia & histologia , Camundongos/anatomia & histologiaRESUMO
The current study was conducted to determine the phylogroups and antibiotic susceptibilities of Escherichia coli isolates recovered from fecal samples of Anatolian Ground Squirrels (Spermophilus xanthoprymnus) and to examine the relationship between them. Eighty-two E. coli isolates obtained from 150 fecal samples were investigated. The quadruplex polymerase chain reaction (PCR), phylogroup C-, and E-specific mPCR were subjected to phylogenetic typing of the isolates. The susceptibilities to fifteen antibiotics of the isolates were detected by the disk diffusion method. In the result of phylogenetic typing, phylogroup B2 was most predominant (58.6 %), followed by B1 (25.6 %), E (8.5 %), C (4.9 %), and D (2.4 %). The phylogroup A, F, and Escherichia clades were not detected. The antibiotic susceptibility test revealed that 59.8 % (49/82) and 19.5 % (16/82) of E. coli isolates were resistant to at least one antibiotic and multidrug-resistant (MDR), respectively. Twenty-six (31.7 %), 19 (23.2 %), 11 (13.4 %), and 10 (12.2 %) of the isolates were found to be resistant to gentamicin, tetracycline, amoxicillin-clavulanic acid, and cefoxitin. Of the 49 E. coli isolates that were found to be resistant to any antibiotic analyzed, 30, 13, 4, and 2 were located in phylogroup B2, B1, E, and D, respectively. MDR isolates were mostly located in both phylogroup B1 (31.3 %) and B2 (31.3 %). In conclusion, data from the current study suggest that the isolates may potentially have pathogenic properties, since the majority (69.5 %) of E. coli isolates from fecal samples of Spermophilus xanthoprymnus were located in the pathogenic phylogroup and resistance to various antibiotics was detected.
Assuntos
Antibacterianos , Escherichia coli , Fezes , Testes de Sensibilidade Microbiana , Filogenia , Sciuridae , Animais , Fezes/microbiologia , Escherichia coli/genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/isolamento & purificação , Escherichia coli/classificação , Sciuridae/microbiologia , Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla/genética , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/veterinária , Reação em Cadeia da Polimerase , Genótipo , Farmacorresistência BacterianaRESUMO
In the past two decades, genomic data have been widely used to detect historical gene flow between species in a variety of plants and animals. The Tamias quadrivittatus group of North America chipmunks, which originated through a series of rapid speciation events, are known to undergo massive amounts of mitochondrial introgression. Yet in a recent analysis of targeted nuclear loci from the group, no evidence for cross-species introgression was detected, indicating widespread cytonuclear discordance. The study used the heuristic method HYDE to detect gene flow, which may suffer from low power. Here we use the Bayesian method implemented in the program BPP to re-analyze these data. We develop a Bayesian test of introgression, calculating the Bayes factor via the Savage-Dickey density ratio using the Markov chain Monte Carlo (MCMC) sample under the model of introgression. We take a stepwise approach to constructing an introgression model by adding introgression events onto a well-supported binary species tree. The analysis detected robust evidence for multiple ancient introgression events affecting the nuclear genome, with introgression probabilities reaching 63%. We estimate population parameters and highlight the fact that species divergence times may be seriously underestimated if ancient cross-species gene flow is ignored in the analysis. We examine the assumptions and performance of HYDE and demonstrate that it lacks power if gene flow occurs between sister lineages or if the mode of gene flow does not match the assumed hybrid-speciation model with symmetrical population sizes. Our analyses highlight the power of likelihood-based inference of cross-species gene flow using genomic sequence data. [Bayesian test; BPP; chipmunks; introgression; MSci; multispecies coalescent; Savage-Dickey density ratio.].
Assuntos
Fluxo Gênico , Sciuridae , Animais , Filogenia , Teorema de Bayes , Sciuridae/genética , Funções Verossimilhança , Heurística , América do Norte , DNA Mitocondrial/genéticaRESUMO
Lyme disease is common in the northeastern United States, but rare in the southeast, even though the tick vector is found in both regions. Infection prevalence of Lyme spirochetes in host-seeking ticks, an important component to the risk of Lyme disease, is also high in the northeast and northern midwest, but declines sharply in the south. As ticks must acquire Lyme spirochetes from infected vertebrate hosts, the role of wildlife species composition on Lyme disease risk has been a topic of lively academic discussion. We compared tick-vertebrate host interactions using standardized sampling methods among 8 sites scattered throughout the eastern US. Geographical trends in diversity of tick hosts are gradual and do not match the sharp decline in prevalence at southern sites, but tick-host associations show a clear shift from mammals in the north to reptiles in the south. Tick infection prevalence declines north to south largely because of high tick infestation of efficient spirochete reservoir hosts (rodents and shrews) in the north but not in the south. Minimal infestation of small mammals in the south results from strong selective attachment to lizards such as skinks (which are inefficient reservoirs for Lyme spirochetes) in the southern states. Selective host choice, along with latitudinal differences in tick host-seeking behavior and variations in tick densities, explains the geographic pattern of Lyme disease in the eastern US.
Assuntos
Vetores de Doenças , Comportamento de Busca por Hospedeiro/fisiologia , Doença de Lyme/epidemiologia , Animais , Animais Selvagens , Borrelia burgdorferi/fisiologia , Clima , Reservatórios de Doenças/microbiologia , Reservatórios de Doenças/estatística & dados numéricos , Vetores de Doenças/classificação , Geografia , Especificidade de Hospedeiro/fisiologia , Humanos , Lagartos/microbiologia , Doença de Lyme/transmissão , Camundongos , Densidade Demográfica , Prevalência , Ratos , Sciuridae/microbiologia , Musaranhos/microbiologia , Infestações por Carrapato/epidemiologia , Infestações por Carrapato/microbiologia , Infestações por Carrapato/transmissão , Carrapatos/microbiologia , Estados Unidos/epidemiologiaRESUMO
The mammalian brain is exquisitely vulnerable to lack of oxygen. However, the mechanism underlying the brain's sensitivity to hypoxia is incompletely understood. In this narrative review, we present a case for sulfide catabolism as a key defense mechanism of the brain against acute oxygen shortage. We will examine literature on the role of sulfide in hypoxia/ischemia, deep hibernation, and leigh syndrome patients, and present our recent data that support the neuroprotective effects of sulfide catabolism and persulfide production. When oxygen levels become low, hydrogen sulfide (H2S) accumulates in brain cells and impairs the ability of these cells to use the remaining, available oxygen to produce energy. In recent studies, we found that hibernating ground squirrels, which can withstand very low levels of oxygen, have high levels of sulfide:quinone oxidoreductase (SQOR) and the capacity to catabolize hydrogen sulfide in the brain. Silencing SQOR increased the sensitivity of the brain of squirrels and mice to hypoxia, whereas neuron-specific SQOR expression prevented hypoxia-induced sulfide accumulation, bioenergetic failure, and ischemic brain injury in mice. Excluding SQOR from mitochondria increased sensitivity to hypoxia not only in the brain but also in heart and liver. Pharmacological agents that scavenge sulfide and/or increase persulfide maintained mitochondrial respiration in hypoxic neurons and made mice resistant to ischemic injury to the brain or spinal cord. Drugs that oxidize hydrogen sulfide and/or increase persulfide may prove to be an effective approach to the treatment of patients experiencing brain injury caused by oxygen deprivation or mitochondrial dysfunction.
Assuntos
Hibernação , Neuroproteção , Hibernação/fisiologia , Animais , Humanos , Sulfetos/metabolismo , Sulfetos/farmacologia , Sulfeto de Hidrogênio/metabolismo , Encéfalo/metabolismo , Camundongos , Sciuridae/metabolismo , Doença de Leigh/metabolismo , Quinona Redutases/metabolismoRESUMO
This study investigates how hibernation affects the surface activity of pulmonary surfactant with respect to temperature and breathing pattern. Surfactant was isolated from a hibernating species, the 13-lined ground squirrel, and a homeotherm, the rabbit, and analysed for biophysical properties on a constrained sessile drop surfactometer. The results showed that surfactant from ground squirrels reduced surface tension better at low temperatures, including when mimicking episodic breathing, as compared with rabbit surfactant. In addition, low temperature adaptation was also observed using only the hydrophobic components of surfactant from ground squirrels. Overall, the data support the conclusion that ground squirrel surfactant has adapted to maintain surface activity during low temperature episodic breathing patterns, and that temperature adaptation is maintained with the hydrophobic components of the surfactant.
Assuntos
Hibernação , Surfactantes Pulmonares , Sciuridae , Tensão Superficial , Temperatura , Animais , Sciuridae/fisiologia , Surfactantes Pulmonares/química , Coelhos , Hibernação/fisiologia , RespiraçãoRESUMO
Animal models of retinal degeneration are critical for understanding disease and testing potential therapies. Inducing degeneration commonly involves the administration of chemicals that kill photoreceptors by disrupting metabolic pathways, signaling pathways, or protein synthesis. While chemically induced degeneration has been demonstrated in a variety of animals (mice, rats, rabbits, felines, 13-lined ground squirrels (13-LGS), pigs, chicks), few studies have used noninvasive high-resolution retinal imaging to monitor the in vivo cellular effects. Here, we used longitudinal scanning light ophthalmoscopy (SLO), optical coherence tomography, and adaptive optics SLO imaging in the euthermic, cone-dominant 13-LGS (46 animals, 52 eyes) to examine retinal structure following intravitreal injections of chemicals, which were previously shown to induce photoreceptor degeneration, throughout the active season of 2019 and 2020. We found that iodoacetic acid induced severe pan-retinal damage in all but one eye, which received the lowest concentration. While sodium nitroprusside successfully induced degeneration of the outer retinal layers, the results were variable, and damage was also observed in 50% of contralateral control eyes. Adenosine triphosphate and tunicamycin induced outer retinal specific damage with varying results, while eyes injected with thapsigargin did not show signs of degeneration. Given the variability of damage we observed, follow-up studies examining the possible physiological origins of this variability are critical. These additional studies should further advance the utility of chemically induced photoreceptor degeneration models in the cone-dominant 13-LGS.
Assuntos
Células Fotorreceptoras Retinianas Cones , Degeneração Retiniana , Sciuridae , Tomografia de Coerência Óptica , Animais , Degeneração Retiniana/induzido quimicamente , Degeneração Retiniana/patologia , Células Fotorreceptoras Retinianas Cones/patologia , Células Fotorreceptoras Retinianas Cones/efeitos dos fármacos , Modelos Animais de Doenças , Injeções Intravítreas , Oftalmoscopia , Nitroprussiato/farmacologia , Feminino , MasculinoRESUMO
Urban areas are expanding exponentially, leading more species of wildlife living in urban environments. Urban environmental characteristics, such as human disturbance, induce stress for many wildlife and have been shown to affect some cognitive traits, such as innovative problem-solving performance. However, because different cognitive traits have common cognitive processes, it is possible that urban environmental characteristics may directly and indirectly affect related cognitive traits (the ripple effect hypothesis). We tested the ripple effect hypothesis in urban Eurasian red squirrels residing in 11 urban areas that had different urban environmental characteristics (direct human disturbance, indirect human disturbance, areas of green coverage and squirrel population size). These squirrels were innovators who had previously repeatedly solved a food extraction task (the original task). Here, we examined whether and how urban environmental characteristics would directly and indirectly influence performance in two related cognitive traits, generalisation and (long-term) memory. The generalisation task required the innovators to apply the learned successful solutions when solving a similar but novel problem. The memory task required them to recall the learned solution of the original task after an extended period of time. Some of the selected urban environmental characteristics directly influenced the task performance, both at the population level (site) and at individual levels. Urban environmental characteristics, such as increased direct and indirect human disturbance, decreased the proportion of success in solving the generalisation task or the memory task at the population (site) level. Increased direct human disturbance and less green coverage increased the solving efficiency at individual levels. We also found an indirect effect in one of the urban environmental characteristics, indirect human disturbance, in the generalisation task, but not the memory task. Such an effect was only seen at the individual level but not at the population level; indirect human disturbance decreased the first original latency, which then decreased the generalisation latency across successes. Our results partially support the ripple effect hypothesis, suggesting that urban environmental characteristics are stressors for squirrels and have a greater impact on shaping cognitive performance than previously shown. Together, these results provide a better understanding of cognitive traits that support wildlife in adapting to urban environments.
Assuntos
Cidades , Cognição , Sciuridae , Animais , Sciuridae/fisiologia , Masculino , Feminino , Resolução de Problemas , Meio Ambiente , MemóriaRESUMO
Mathematical models highlighted the importance of pathogen-mediated invasion, with the replacement of red squirrels by squirrelpox virus (SQPV) carrying grey squirrels in the UK, a well-known example. In this study, we combine new epidemiological models, with a range of infection characteristics, with recent longitudinal field and experimental studies on the SQPV dynamics in red and grey squirrel populations to better infer the mechanistic basis of the disease interaction. A key finding is that a model with either partial immunity or waning immunity and reinfection, where individuals become seropositive on the second exposure to infection, that up to now has been shown in experimental data only, can capture the key aspects of the field study observations. By fitting to SQPV epidemic observations in isolated red squirrel populations, we can infer that SQPV transmission between red squirrels is significantly (4×) higher than the transmission between grey squirrels and as a result our model shows that disease-mediated replacement of red squirrels by greys is considerably more rapid than replacement in the absence of SQPV. Our findings recover the key results of the previous model studies, which highlights the value of simple strategic models that are appropriate when there are limited data, but also emphasise the likely complexity of immune interactions in wildlife disease and how models can help infer disease processes from field data.
Assuntos
Infecções por Poxviridae , Sciuridae , Animais , Sciuridae/virologia , Sciuridae/imunologia , Sciuridae/fisiologia , Reino Unido/epidemiologia , Infecções por Poxviridae/veterinária , Infecções por Poxviridae/transmissão , Infecções por Poxviridae/virologia , Infecções por Poxviridae/imunologia , Infecções por Poxviridae/epidemiologia , Doenças dos Roedores/virologia , Doenças dos Roedores/transmissão , Doenças dos Roedores/imunologia , Doenças dos Roedores/epidemiologia , Modelos Biológicos , Poxviridae/fisiologia , Poxviridae/imunologia , Espécies IntroduzidasRESUMO
Food hoarding provides animals access to resources during periods of scarcity. Studies on mammalian caching indicate associations with brain size, seasonality and diet but are biased to a subset of rodents. Whether the behaviour is generalizable at other taxonomic scales and/or is influenced by other ecological factors is less understood. Population density may influence food caching due to food competition or pilferage, but this remains untested in a comparative framework. Using phylogenetic analyses, we assessed the role of morphology (body and brain size), climate, diet breadth and population density on food caching behaviour evolution at multiple taxonomic scales. We also used a long-term dataset on caching behaviour of red squirrels (Tamiasciurus fremonti) to test key factors (climate and population density) on hoarding intensity. Consistent with previous smaller scale studies, we found the mammalian ancestral state for food caching was larderhoarding, and scatterhoarding was derived. Caching strategy was strongly associated with brain size, population density and climate. Mammals with larger brains and hippocampal volumes were more likely to scatterhoard, and species living at higher population densities and in colder climates were more likely to larderhoard. Finer-scale analyses within families, sub-families and tribes indicated that the behaviour is evolutionary labile. Brain size in family Sciuridae and tribe Marmotini was larger in scatterhoarders, but not in other tribes. Scatterhoarding in tribe Marmotini was more likely in species with lower population densities while scatterhoarding in tribe Sciurini was associated with warmer climates. Red squirrel larderhoarding intensity was positively related to population density but not climate, implicating food competition or pilferage as an important mechanism mediating caching behaviour. Our results are consistent with previous smaller-scale studies on food caching and indicate the evolutionary patterns of mammalian food caching are broadly generalizable. Given the lability of caching behaviour as evidenced by the variability of our results at finer phylogenetic scales, comparative analyses must consider taxonomic scale. Applying our results to conservation could prove useful as changes in population density or climate may select for different food caching strategies and thus can inform management of threatened and endangered species and their habitats.
Assuntos
Evolução Biológica , Comportamento Alimentar , Mamíferos , Animais , Mamíferos/fisiologia , Classificação , Encéfalo , Sciuridae , Abastecimento de Alimentos , ClimaRESUMO
Fibrinogen Aα-chain amyloidosis is a hereditary systemic amyloidosis characterized by glomerular amyloid depositions, which are derived from the fibrinogen Aα-chain variant in humans. Despite its unique pathology, the pathogenic mechanisms of this disease are only partially understood. This is in part because comparative pathological studies on fibrinogen Aα-chain amyloidosis are currently unavailable as there is a lack of reported cases in animals other than humans. In this study, mass spectrometry-based proteomic analyses of Japanese squirrels (Sciurus lis) that died in five Japanese zoos showed that they developed glomerular-associated fibrinogen Aα-chain amyloidosis with an extremely high incidence rate (29/38 cases, 76.3%). The condition was found to be age-dependent in the Japanese squirrels, with 89% of individuals over 4 years of age affected. Mass spectrometry revealed that the C-terminal region of the fibrinogen Aα-chain was involved in amyloidogenesis in Japanese squirrels as well as humans. No gene variations were identified between amyloid-positive and amyloid-negative squirrels, which contrasted with the available data for humans. The results indicate that fibrinogen Aα-chain amyloidosis is a senile amyloidosis in Japanese squirrels. The results have also provided comparative pathological support that the amyloidogenic C-terminal region of the fibrinogen Aα-chain is involved in the characteristic glomerular pathology, regardless of the animal species. This study elucidates the potential causes of death in Japanese squirrels and will contribute to future comparative pathological studies of fibrinogen Aα-chain amyloidosis. © 2023 The Pathological Society of Great Britain and Ireland.
Assuntos
Amiloidose , Nefropatias , Sciuridae , Animais , Amiloidose/epidemiologia , Amiloidose/genética , Amiloidose/veterinária , Surtos de Doenças , Nefropatias/genética , Nefropatias/veterinária , ProteômicaRESUMO
Many studies assume that it is beneficial for individuals of a species to be heavier, or have a higher body condition index (BCI), without accounting for the physiological relevance of variation in the composition of different body tissues. We hypothesized that the relationship between BCI and masses of physiologically important tissues (fat and lean) would be conditional on annual patterns of energy acquisition and expenditure. We studied three species with contrasting ecologies in their respective natural ranges: an obligate hibernator (Columbian ground squirrel, Urocitellus columbianus), a facultative hibernator (black-tailed prairie dog, Cynomys ludovicianus), and a food-caching non-hibernator (North American red squirrel, Tamiasciurus hudsonicus). We measured fat and lean mass in adults of both sexes using quantitative magnetic resonance (QMR). We measured body mass and two measures of skeletal structure (zygomatic width and right hind foot length) to develop sex- and species-specific BCIs, and tested the utility of BCI to predict body composition in each species. Body condition indices were more consistently, and more strongly correlated, with lean mass than fat mass. The indices were most positively correlated with fat when fat was expected to be very high (pre-hibernation prairie dogs). In all cases, however, BCI was never better than body mass alone in predicting fat or lean mass. While the accuracy of BCI in estimating fat varied across the natural histories and annual energetic patterns of the species considered, measuring body mass alone was as effective, or superior in capturing sufficient variation in fat and lean in most cases.