Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 336
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Anal Chem ; 96(3): 1156-1166, 2024 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-38190495

RESUMO

Selenopeptide identification relies on databases to interpret the selenopeptide spectra. A common database search strategy is to set selenium as a variable modification instead of sulfur on peptides. However, this approach generally detects only a fraction of selenopeptides. An alternative approach, termed Selenium Decipher, is proposed in the present study. It involves identifying collision-induced dissociation-cleavable selenomethionine-containing peptides by iteratively matching the masses of seleno-amino acids in selenopeptide spectra. This approach uses variable-data-independent acquisition (vDIA) for peptide detection, providing a flexible and customizable window for secondary mass spectral fragmentation. The attention mechanism was used to capture global information on peptides and determine selenomethionine-containing peptide backbones. The core structure of selenium on selenomethionine-containing peptides generates a series of fragment ions, namely, C3H7Se+, C4H10NSe+, C5H7OSe+, C5H8NOSe+, and C7H11N2O2Se+, with known mass gaps during higher-energy collisional dissociation (HCD) fragmentation. De-selenium spectra are generated by removing selenium originating from selenium replacement and then reassigning the precursors to peptides. Selenium-enriched milk is obtained by feeding selenium-rich forage fed to cattle, which leads to the formation of native selenium through biotransformation. A novel antihypertensive selenopeptide Thr-Asp-Asp-Ile-SeMet-Cys-Val-Lys TDDI(Se)MCVK was identified from selenium-enriched milk. The selenopeptide (IC50 = 60.71 µM) is bound to four active residues of the angiotensin-converting enzyme (ACE) active pocket (Ala354, Tyr523, His353, and His513) and two active residues of zinc ligand (His387 and Glu411) and exerted a competitive inhibitory effect on the spatial blocking of active sites. The integration of vDIA and the iteratively matched seleno-amino acids was applied for Selenium Decipher, which provides high validity for selenomethionine-containing peptide identification.


Assuntos
Selênio , Selenometionina , Animais , Bovinos , Selenometionina/análise , Selenometionina/química , Selenometionina/metabolismo , Selênio/química , Leite/química , Temperatura , Peptídeos/química
2.
Proc Natl Acad Sci U S A ; 118(8)2021 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-33602807

RESUMO

Site-selective chemical bioconjugation reactions are enabling tools for the chemical biologist. Guided by a careful study of the selenomethionine (SeM) benzylation, we have refined the reaction to meet the requirements of practical protein bioconjugation. SeM is readily introduced through auxotrophic expression and exhibits unique nucleophilic properties that allow it to be selectively modified even in the presence of cysteine. The resulting benzylselenonium adduct is stable at physiological pH, is selectively labile to glutathione, and embodies a broadly tunable cleavage profile. Specifically, a 4-bromomethylphenylacetyl (BrMePAA) linker has been applied for efficient conjugation of complex organic molecules to SeM-containing proteins. This expansion of the bioconjugation toolkit has broad potential in the development of chemically enhanced proteins.


Assuntos
Glutationa/metabolismo , Selenometionina/química , Selenometionina/metabolismo , Selenoproteínas/metabolismo , Catálise , Selenoproteínas/química
3.
Anal Chem ; 95(31): 11583-11588, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37499220

RESUMO

Selenized yeast is commonly used as a highly bioavailable source of selenium in dietary supplements and feed additives and is used in research settings in various disciplines due to the large number of selenium-containing metabolites formed during growth. With the selenomethionine being the major form of selenium present in selenized yeasts, its accurate quantitation is essential, however, values are frequently underestimated due to the costly and time-consuming hydrolysis-based sample preparation required to release the selenoamino acid from proteins for analysis. The National Research Council Canada has developed an 82-Se-enriched selenized yeast Certified Reference Material, SEEY-1 (DOI: 10.4224/crm.2023.seey-1) intended to be used as a matrix-matched spike material for isotope dilution analysis of selenized yeasts. The total selenium and selenomethionine contents of SEEY-1 were determined to be 322.1 ± 4.8 mg/kg (k = 2) and 635.6 ± 16.8 mg/kg (k = 2), respectively. Here we present results on the preparation of the 82-Se-enriched yeast, the certification process, and provide an example of the use of SEEY-1 as a matrix-matched spike for the analysis of selenomethionine in a sample of selenized yeast. We demonstrate here that SEEY-1 is able to compensate for the partial digestion of yeast proteins and provide reliable analytical data on Se amino acid content in under an hour instead of the 16 hours required for conventional complete acid hydrolysis.


Assuntos
Selênio , Selenometionina , Selenometionina/análise , Selenometionina/química , Selenometionina/metabolismo , Saccharomyces cerevisiae/metabolismo , Selênio/química , Espectrometria de Massas/métodos , Isótopos/metabolismo
4.
Molecules ; 26(16)2021 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-34443660

RESUMO

Selenomethionine (SeMet) is one of the main selenium forms in foods and supplements. Determining its presence in natural food samples creates difficulties due to possible oxidation processes. The objective of this study was to evaluate the possible degradation of SeMet in water extracts of green teas, one of the most consumed beverages worldwide. Such a medium has not been investigated at this time. The HILIC-HPLC MS/MS method with different stationary phases was used to achieve the satisfactory separation of SeMet and selenomethionine oxide (SeMetO). The addition of dithiothreitol and ß-mercaptoethanol, recommended to ensure that SeMet is kept in the reduced form, was also evaluated. The best separation was achieved using the zwitterionic HILIC stationary phase coupled to mass spectrometry and MeOH with water (85/15, v/v) as the eluent. Extraction was done with hot water with the addition of ß-mercaptoethanol. The infusions prepared from Lung-Ching teas (from the Zhejiang Province in China) contained the highest concentration of selenium in a typical cup of tea (12.5-17.3 µg L-1). For other tested teas it decreased in the following order: Yunnan > Dilmah > Lipton. For Lung-Ching teas, the sum of concentrations of SeMet and SeMetO corresponded to about 46-63% of the total selenium in their extracts.


Assuntos
Antioxidantes/química , Estresse Oxidativo/efeitos dos fármacos , Selênio/isolamento & purificação , Selenometionina/isolamento & purificação , Antioxidantes/isolamento & purificação , China , Cromatografia Líquida de Alta Pressão , Suplementos Nutricionais/análise , Humanos , Selênio/química , Selenometionina/química , Espectrometria de Massas em Tandem
5.
Molecules ; 26(4)2021 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-33562416

RESUMO

The trace element selenium (Se) is a crucial element for many living organisms, including soil microorganisms, plants and animals, including humans. Generally, in Nature Se is taken up in the living cells of microorganisms, plants, animals and humans in several inorganic forms such as selenate, selenite, elemental Se and selenide. These forms are converted to organic forms by biological process, mostly as the two selenoamino acids selenocysteine (SeCys) and selenomethionine (SeMet). The biological systems of plants, animals and humans can fix these amino acids into Se-containing proteins by a modest replacement of methionine with SeMet. While the form SeCys is usually present in the active site of enzymes, which is essential for catalytic activity. Within human cells, organic forms of Se are significant for the accurate functioning of the immune and reproductive systems, the thyroid and the brain, and to enzyme activity within cells. Humans ingest Se through plant and animal foods rich in the element. The concentration of Se in foodstuffs depends on the presence of available forms of Se in soils and its uptake and accumulation by plants and herbivorous animals. Therefore, improving the availability of Se to plants is, therefore, a potential pathway to overcoming human Se deficiencies. Among these prospective pathways, the Se-biofortification of plants has already been established as a pioneering approach for producing Se-enriched agricultural products. To achieve this desirable aim of Se-biofortification, molecular breeding and genetic engineering in combination with novel agronomic and edaphic management approaches should be combined. This current review summarizes the roles, responses, prospects and mechanisms of Se in human nutrition. It also elaborates how biofortification is a plausible approach to resolving Se-deficiency in humans and other animals.


Assuntos
Biofortificação , Ácido Selênico/metabolismo , Selênio/metabolismo , Selenoproteínas/metabolismo , Animais , Antioxidantes/química , Antioxidantes/metabolismo , Humanos , Plantas/metabolismo , Ácido Selênico/química , Selênio/química , Selenocisteína/química , Selenocisteína/metabolismo , Selenometionina/química , Selenometionina/metabolismo , Selenoproteínas/biossíntese , Solo/química
6.
Biochemistry ; 58(44): 4436-4446, 2019 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-31626532

RESUMO

The M centers of the mononuclear monooxygenases peptidylglycine monooxygenase (PHM) and dopamine ß-monooxygenase bind and activate dioxygen en route to substrate hydroxylation. Recently, we reported the rational design of a protein-based model in which the CusF metallochaperone was repurposed via a His to Met mutation to act as a structural and spectroscopic biomimic. The PHM M site exhibits a number of unusual attributes, including a His2Met ligand set, a fluxional Cu(I)-S(Met) bond, tight binding of exogenous ligands CO and N3-, and complete coupling of oxygen reduction to substrate hydroxylation even at extremely low turnover rates. In particular, mutation of the Met ligand to His completely eliminates the catalytic activity despite the propensity of CuI-His3 centers to bind and activate dioxygen in other metalloenzyme systems. Here, we further develop the CusF-based model to explore methionine variants in which Met is replaced by selenomethionine (SeM) and histidine. We examine the effects on coordinate structure and exogenous ligand binding via X-ray absorption spectroscopy and electron paramagnetic resonance and probe the consequences of mutations on redox chemistry via studies of the reduction by ascorbate and oxidation via molecular oxygen. The M-site model is three-coordinate in the Cu(I) state and binds CO to form a four-coordinate carbonyl. In the oxidized forms, the coordination changes to tetragonal five-coordinate with a long axial Met ligand that like the enzymes is undetectable at either the Cu or Se K edges. The EXAFS data at the Se K edge of the SeM variant provide unique information about the nature of the Cu-methionine bond that is likewise weak and fluxional. Kinetic studies document the sluggish reactivity of the Cu(I) complexes with molecular oxygen and rapid rates of reduction of the Cu(II) complexes by ascorbate, indicating a remarkable stability of the Cu(I) state in all three derivatives. The results show little difference between the Met ligand and its SeM and His congeners and suggest that the Met contributes to catalysis in ways that are more complex than simple perturbation of the redox chemistry. Overall, the results stimulate a critical re-examination of the canonical reaction mechanisms of the mononuclear copper monooxygenases.


Assuntos
Domínio Catalítico , Proteínas de Transporte de Cobre/química , Proteínas de Escherichia coli/química , Histidina/química , Oxigenases de Função Mista/química , Complexos Multienzimáticos/química , Selenometionina/química , Substituição de Aminoácidos , Ácido Ascórbico/química , Complexos de Coordenação/química , Cobre/química , Proteínas de Transporte de Cobre/genética , Escherichia coli/química , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Mutação , Oxirredução , Oxigênio/química
7.
Chembiochem ; 20(10): 1315-1325, 2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-30644160

RESUMO

Abundant post-translational modification through methylation alters the function, stability, and/or localization of a protein. Malfunctions in post-translational modification are associated with severe diseases. To unravel protein methylation sites and their biological functions, chemical methylation reporters have been developed. However, until now, their usage was limited to cell lysates. Herein, we present the first generally applicable approach for imaging methylation of individual proteins in human cells, which is based on a combination of chemical reporter strategies, bioorthogonal ligation reactions, and FRET detected by means of fluorescence lifetime imaging microscopy. Through this approach, methylation of histone 4 and the non-histone proteins tumor suppressor p53, kinase Akt1, and transcription factor Foxo1 in two human cell lines has been successfully imaged. To further demonstrate its potential, the localization-dependent methylation state of Foxo1 in the cellular context has been visualized.


Assuntos
Proteína Forkhead Box O1/metabolismo , Histonas/metabolismo , Microscopia Confocal/métodos , Microscopia de Fluorescência/métodos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Alcinos/química , Alcinos/metabolismo , Azidas/química , Carbocianinas/química , Corantes Fluorescentes/química , Proteína Forkhead Box O1/química , Células HEK293 , Células HeLa , Histonas/química , Humanos , Metilação , Metiltransferases/metabolismo , Proteínas Proto-Oncogênicas c-akt/química , Selenometionina/análogos & derivados , Selenometionina/química , Selenometionina/metabolismo , Proteína Supressora de Tumor p53/química
8.
Electrophoresis ; 40(15): 1951-1958, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31111508

RESUMO

A MEKC methodology with UV detection was developed for the enantioselective separation of selenomethionine (SeMet). The use of (+)-1-(9-fluorenyl)ethyl chloroformate (FLEC) as chiral derivatization reagent to form SeMet diastereomers enabled their subsequent separation using ammonium perfluorooctanoate (APFO) as a volatile pseudostationary phase. The effect of APFO concentration and pH, temperature, injection volume, and derivatization conditions (time and FLEC/SeMet ratio) were evaluated in order to select the best separation conditions. A chiral resolution of 4.4 for DL-SeMet was achieved in less than 6 min using 100 mM APFO at pH 8.5 as electrophoretic buffer. Satisfactory results were obtained in terms of linearity, precision (RSD from 3.4 to 5.1% for migration times and from 1.8 to 4.6% for corrected peak areas), accuracy, and LODs (3.1 × 10-6  M and 3.7 × 10-6  M for d and l enantiomers, respectively). The method was successfully applied to the determination of l-SeMet in food supplements.


Assuntos
Cromatografia Capilar Eletrocinética Micelar/métodos , Selenometionina/isolamento & purificação , Tensoativos/química , Caprilatos/química , Fluorenos/química , Fluorocarbonos/química , Limite de Detecção , Modelos Lineares , Reprodutibilidade dos Testes , Selenometionina/análise , Selenometionina/química , Estereoisomerismo
9.
J Phys Chem A ; 123(28): 5995-6002, 2019 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-31268326

RESUMO

High-resolution X-ray crystallography and two-dimensional NMR studies demonstrate that water-mediated conventional hydrogen-bonding interactions (N-H···N, O-H···N, etc.) bridging two or more amino acid residues contribute to the stability of proteins and protein-ligand complexes. In this work, we have investigated single water-mediated selenium hydrogen-bonding interactions (unconventional hydrogen-bonding) between amino acid residues in proteins through extensive protein data bank (PDB) analysis coupled with gas-phase spectroscopy and quantum chemical calculation of a model complex consisting of indole, dimethyl selenide, and water. Here, indole and dimethyl selenide represent the amino acid residues tryptophan and selenomethionine, respectively. The current investigation demonstrates that the most stable structure of the model complex observed in the IR spectroscopy mimics single water-mediated selenium hydrogen-bonded structural motifs present in the crystal structures of proteins. The present work establishes that water-mediated Se hydrogen-bonding interactions are ubiquitous in proteins and the number of these interactions observed in the PDB is more than that of direct Se hydrogen-bonds present there.


Assuntos
Proteínas/química , Selênio/química , Água/química , Biologia Computacional , Cristalografia por Raios X , Bases de Dados de Proteínas , Ligação de Hidrogênio , Indóis/química , Ligantes , Modelos Moleculares , Compostos Organosselênicos/química , Teoria Quântica , Selenometionina/química , Espectrofotometria Infravermelho , Triptofano/química
10.
Chemistry ; 24(20): 5225-5237, 2018 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-29193386

RESUMO

Acireductone dioxygenase (ARD) is an intriguing enzyme from the methionine salvage pathway that is capable of catalysing two different oxidation reactions with the same substrate depending on the type of the metal ion in the active site. To date, the structural information regarding the ARD-acireductone complex is limited and possible reaction mechanisms are still under debate. The results of joint experimental and computational studies undertaken to advance knowledge about ARD are reported. The crystal structure of an ARD from Homo sapiens was determined with selenomethionine. EPR spectroscopy suggested that binding acireductone triggers one protein residue to dissociate from Fe2+ , which allows NO (and presumably O2 ) to bind directly to the metal. Mössbauer spectroscopic data (interpreted with the aid of DFT calculations) was consistent with bidentate binding of acireductone to Fe2+ and concomitant dissociation of His88 from the metal. Major features of Fe vibrational spectra obtained for the native enzyme and upon addition of acireductone were reproduced by QM/MM calculations for the proposed models. A computational (QM/MM) study of the reaction mechanisms suggests that Fe2+ promotes O-O bond homolysis, which elicits cleavage of the C1-C2 bond of the substrate. Higher M3+ /M2+ redox potentials of other divalent metals do not support this pathway, and instead the reaction proceeds similarly to the key reaction step in the quercetin 2,3-dioxygenase mechanism.


Assuntos
Dioxigenases/química , Ferro/química , Catálise , Domínio Catalítico , Humanos , Íons , Modelos Moleculares , Oxirredução , Ligação Proteica , Conformação Proteica , Selenometionina/química , Transdução de Sinais
11.
Prep Biochem Biotechnol ; 48(3): 213-217, 2018 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-27380164

RESUMO

Yarrowia lipolytica is a nonconventional model micro-organism with multiple biotechnological applications. It is also considered to be an excellent producer for lipase. Genome survey shows that Y. lipolytica possesses various paralogs of genes coding for extracellular, cell-bound, and intracellular lipolytic enzymes. However, little structural information on these isoenzymes is available. With the aim to facilitate crystal structure solution of Lip8, one of the most valuable lipases from Y. lipolytica, a less conventional protein expression technique-selenomethionyl protein expression was used to produce recombinant selenomethionine (SeMet)-Lip8 in Escherichia coli. Finally, three Met residues of Lip8 were all substituted with SeMet. A total of 72 mg of SeMet-Lip8 was obtained from a liter of the SeMet medium. Using sodium acetate as a precipitant and ammonium sulfate as an additive, crystals of the SeMet-Lip8 with 1.9 Å were successfully cultured through hanging-drop vapor diffusion method. The estimated crystal dimensions were 0.11 × 0.11 × 0.14 mm2. The crystal belonged to the space group I4 with unit cell parameters a = b = 128.87 Å, c = 171.77 Å, α = ß = γ = 90°. It is the second member of lipase crystal family from Y. lipolytica. This work will provide a platform for further studying lipases from a structural insight.


Assuntos
Lipase/química , Yarrowia/enzimologia , Clonagem Molecular , Cristalização , Cristalografia por Raios X , Escherichia coli/genética , Lipase/genética , Lipase/metabolismo , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Selenometionina/química , Selenometionina/metabolismo , Yarrowia/química , Yarrowia/genética , Yarrowia/metabolismo
12.
Angew Chem Int Ed Engl ; 57(28): 8697-8701, 2018 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-29797386

RESUMO

Amino-γ-lactam (Agl) bridged dipeptides, commonly known as Freidinger lactams, have been shown to constrain peptide backbone topology and stabilize type II' ß-turns. The utility of these links as peptide constraints has inspired new approaches to their incorporation into complex peptides and peptoids, all of which require harsh reaction conditions or protecting groups that limit their use on unprotected peptides and proteins. Herein, we employ a mild and selective alkylation of selenomethionine in acidic aqueous solution, followed by immobilization of the alkylated peptide on to bulk reverse-phase C18 silica and base-induced lactamization in DMSO. The utilization of selenomethionine, which is readily introduced by synthesis or expression, and the mild conditions enable selective backbone engineering in complex peptide and protein systems.


Assuntos
Lactamas/metabolismo , Engenharia Metabólica , Selenometionina/metabolismo , Alquilação , Lactamas/química , Conformação Molecular , Processamento de Proteína Pós-Traducional , Selenometionina/síntese química , Selenometionina/química
13.
Biochemistry ; 56(8): 1085-1094, 2017 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-28124899

RESUMO

Fluorescence spectroscopy, relying on intrinsic protein fluorophores, is one of the most widely used methods for studying protein folding, protein-ligand interactions, and protein dynamics. Tryptophan is usually the fluorophore of choice, given its sensitivity to its environment and having the highest quantum yield of the natural amino acids; however, changes in tryptophan fluorescence can be difficult to interpret in terms of specific structural changes. The introduction of quenchers of tryptophan fluorescence can provide information about specific structures, particularly if quenching is short-range; however, the most commonly employed quencher is histidine, and it is effective only when the imidazole side chain is protonated, thus limiting the pH range over which this approach can be employed. In addition, histidine is not always a conservative substitution and is likely to be destabilizing if inserted into the hydrophobic core of proteins. Here we illustrate the use of a Trp-selenomethionine (MSe) pair as a specific probe of protein structure. MSe requires a close approach to Trp to quench its fluorescence, and this effect can be exploited to design specific probes of α-helix and ß-sheet formation. The approach is illustrated using equilibrium and time-resolved fluorescence measurements of designed peptides and globular proteins. MSe is easily incorporated into proteins and provides a conservative replacement for hydrophobic side chains, and MSe quenching of Trp fluorescence is pH-independent. The oxidized form of MSe, selenomethionine selenoxide, is also an efficient quencher of Trp fluorescence.


Assuntos
Corantes Fluorescentes/química , Proteínas Ribossômicas/química , Selenometionina/química , Triptofano/química , Concentração de Íons de Hidrogênio , Simulação de Dinâmica Molecular , Oxirredução , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Espectrometria de Fluorescência
14.
Biochemistry ; 56(17): 2304-2314, 2017 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-28346784

RESUMO

The Mycobacterium tuberculosis (Mtb) serine protease Hip1 (hydrolase important for pathogenesis; Rv2224c) promotes tuberculosis (TB) pathogenesis by impairing host immune responses through proteolysis of a protein substrate, Mtb GroEL2. The cell surface localization of Hip1 and its immunomodulatory functions make Hip1 a good drug target for new adjunctive immune therapies for TB. Here, we report the crystal structure of Hip1 to a resolution of 2.6 Å and the kinetic studies of the enzyme against model substrates and the protein GroEL2. The structure shows a two-domain protein, one of which contains the catalytic residues that are the signature of a serine protease. Surprisingly, a threonine is located within the active site close enough to hydrogen bond with the catalytic residues Asp463 and His490. Mutation of this residue, Thr466, to alanine established its importance for function. Our studies provide insights into the structure of a member of a novel family of proteases. Knowledge of the Hip1 structure will aid in designing inhibitors that could block Hip1 activity.


Assuntos
Proteínas de Bactérias/metabolismo , Modelos Moleculares , Mycobacterium tuberculosis/enzimologia , Serina Proteases/metabolismo , Substituição de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Biocatálise , Domínio Catalítico , Dicroísmo Circular , Cristalografia por Raios X , Estabilidade Enzimática , Metionina/química , Mutagênese Sítio-Dirigida , Mutação , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Conformação Proteica , Proteólise , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Selenometionina/química , Serina Proteases/química , Serina Proteases/genética , Homologia Estrutural de Proteína , Especificidade por Substrato
15.
Anal Biochem ; 530: 9-16, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28476531

RESUMO

Studies have shown that information related to the presence of low-molecular-weight metabolites is frequently lost after deproteinization of complex matrices, such as blood and plasma, during sample preparation. Therefore, the effect of several deproteinization reagents on low-molecular-weight selenium species has been compared by species-specific isotope labeling. Two isotopically enriched selenium tracers were used to mimic models of small inorganic anionic (77Se-selenite) and organic zwitterionic (76Se-selenomethionine) species. The results presented here show that the use of a methanol-acetonitrile-acetone (1:1:1 v/v/v) mixture provided approximately two times less tracer loss from plasma samples in comparison with the classic procedure using acetonitrile, which may not be optimal as it leads to important losses of low-molecular-weight selenium species. In addition, the possible interactions between selenium tracers and proteins were investigated, revealing that both coprecipitation phenomena and association with proteins were potentially responsible for selenite tracer losses during protein precipitation in blood samples. However, coprecipitation phenomena were found to be fully responsible for losses of both tracers observed in plasma samples and of the selenomethionine tracer in blood samples. This successfully applied strategy is anticipated to be useful for more extensive future studies in selenometabolomics.


Assuntos
Proteínas Sanguíneas/análise , Plasma/química , Traçadores Radioativos , Radioisótopos de Selênio/análise , Selênio/análise , Selenometionina/análise , Proteínas Sanguíneas/isolamento & purificação , Espectrometria de Massas , Peso Molecular , Selênio/química , Selênio/isolamento & purificação , Radioisótopos de Selênio/química , Radioisótopos de Selênio/isolamento & purificação , Selenometionina/química , Selenometionina/isolamento & purificação
16.
Bioorg Med Chem ; 25(18): 4983-4989, 2017 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-28526476

RESUMO

Selenomethionine (Sem) has been incorporated recombinantly into proteins many times to elucidate their structure and function. In this paper, we revisit incorporation via chemical protein synthesis to shed light on the mechanism of native chemical ligation. The effect of chalcogen position on ligation is investigated, and selenium-containing peptide ligation is optimized. Additionally, selective methylation is performed on selenolates in a peptide in the presence of unprotected thiols.


Assuntos
Peptídeos/síntese química , Selenocisteína/análogos & derivados , Selenocisteína/química , Selenometionina/química , Sequência de Aminoácidos , Calcogênios/química , Cromatografia Líquida de Alta Pressão , Metilação , Peptídeos/análise , Peptídeos/química
17.
Biochemistry ; 55(26): 3685-91, 2016 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-27258904

RESUMO

Coiled coils are abundant in nature, occurring in ∼3% of proteins across sequenced genomes, and are found in proteins ranging from transcription factors to structural proteins. The motif continues to be an important model system for understanding protein-protein interactions and is finding increased use in bioinspired materials and synthetic biology. Knowledge of the thermodynamics of self-assembly, particularly the dissociation constant KD, is essential for the application of designed coiled coils and for understanding the in vivo specificity of natural coiled coils. Standard methods for measuring KD typically rely on concentration dependent circular dichroism (CD). Fluorescence methods are an attractive alternative; however Trp is rarely found in an interior position of a coiled coil, and appending unnatural fluorophores can perturb the system. We demonstrate a simple, non-perturbing method to monitor coiled coil formation using p-cyanophenylalanine (FCN) and selenomethionine (MSe), the Se analogue of Met. FCN fluorescence can be selectively excited and is effectively quenched by electron transfer with MSe. Both FCN and MSe represent minimally perturbing substitutions in coiled coils. MSe quenching of FCN fluorescence is shown to offer a non-perturbing method for following coiled coil formation and for accurately determining dissociation constants. The method is validated using a designed heterodimeric coiled coil. The KD deduced by fluorescence monitored titration is in excellent agreement with the value deduced from concentration dependent CD measurements to within the uncertainty of the measurement. However, the fluorescence approach requires less protein, is less time-consuming, can be applied to lower concentrations and could be applied to high throughput screens.


Assuntos
Alanina/análogos & derivados , Elétrons , Fluorescência , Nitrilas/química , Selenometionina/química , Alanina/química , Dicroísmo Circular , Transporte de Elétrons , Modelos Moleculares , Estrutura Secundária de Proteína , Espectrometria de Fluorescência , Termodinâmica
18.
Chembiochem ; 17(18): 1738-51, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27383291

RESUMO

Trifluoroselenomethionine (TFSeM), a new unnatural amino acid, was synthesized in seven steps from N-(tert-butoxycarbonyl)-l-aspartic acid tert-butyl ester. TFSeM shows enhanced methioninase-induced cytotoxicity, relative to selenomethionine (SeM), toward HCT-116 cells derived from human colon cancer. Mechanistic explanations for this enhanced activity are computationally and experimentally examined. Comparison of TFSeM and SeM by selenium EXAFS and DFT calculations showed them to be spectroscopically and structurally very similar. Nonetheless, when two different variants of the protein GB1 were expressed in an Escherichia coli methionine auxotroph cell line in the presence of TFSeM and methionine (Met) in a 9:1 molar ratio, it was found that, surprisingly, 85 % of the proteins contained SeM residues, even though no SeM had been added, thus implying loss of the trifluoromethyl group from TFSeM. The transformation of TFSeM into SeM is enzymatically catalyzed by E. coli extracts, but TFSeM is not a substrate of E. coli methionine adenosyltransferase.


Assuntos
Aminoácidos/química , Selenometionina/análogos & derivados , Aminoácidos/síntese química , Aminoácidos/farmacologia , Liases de Carbono-Enxofre/metabolismo , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Células HCT116 , Humanos , Modelos Moleculares , Conformação Molecular , Teoria Quântica , Selenometionina/síntese química , Selenometionina/química , Selenometionina/farmacologia , Relação Estrutura-Atividade
19.
Anal Bioanal Chem ; 408(4): 1033-42, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26547190

RESUMO

A new anion-exchange chromatographic separation method was used for the simultaneous speciation analysis of selenoamino acids and the more ubiquitous inorganic selenium oxyanions, selenite and selenate. For quantification, this separation was coupled to inductively coupled plasma-mass spectrometry to achieve an instrumental detection limit of 5 ng Se L(-1) for all species. This chromatographic method was also coupled to electrospray tandem mass spectrometry to observe the negative ion mode fragmentation of selenomethionine and one of its oxidation products. Low detection limits were achieved, which were similar to those obtained using inductively coupled plasma-mass spectrometry. An extensive preconcentration and cleanup procedure using cation-exchange solid-phase extraction was developed for the identification and quantification of trace levels of selenomethionine in environmental samples. Preconcentration factors of up to five were observed for selenomethionine, which in addition to the removal of high concentrations of sulphate and chloride from industrial process waters, allowed for an unambiguous analysis that would have been impossible otherwise. Following these methods, selenomethionine was identified at an original concentration of 3.2 ng Se L(-1) in samples of effluent collected at a coal-fired power plant's biological remediation site. It is the first time that this species has been identified in the environment, outside of a biological entity. Additionally, oxidation products of selenomethionine were identified in river water and laboratory algal culture samples. High-resolution mass spectrometry was employed to postulate the chemical structures of these species.


Assuntos
Cromatografia por Troca Iônica/métodos , Água Doce/análise , Selenometionina/análise , Espectrometria de Massas por Ionização por Electrospray/métodos , Ânions , Água Doce/química , Limite de Detecção , Compostos Organosselênicos/análise , Concentração Osmolar , Oxirredução , Ácido Selênico/análise , Compostos de Selênio/análise , Selenometionina/química , Extração em Fase Sólida
20.
Bioorg Chem ; 64: 37-41, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26642178

RESUMO

The investigation of a difluoromethyl-bearing nucleoside with the fluorinase enzyme is described. 5',5'-Difluoro-5'-deoxyadenosine 7 (F2DA) was synthesised from adenosine, and found to bind to the fluorinase enzyme by isothermal titration calorimetry with similar affinity compared to 5'-fluoro-5'-deoxyadenosine 2 (FDA), the natural product of the enzymatic reaction. F2DA7 was found, however, not to undergo the enzyme catalysed reaction with L-selenomethionine, unlike FDA 2, which undergoes reaction with L-selenomethionine to generate Se-adenosylselenomethionine. A co-crystal structure of the fluorinase and F2DA7 and tartrate was solved to 1.8Å, and revealed that the difluoromethyl group bridges interactions known to be essential for activation of the single fluorine in FDA 2. An unusual hydrogen bonding interaction between the hydrogen of the difluoromethyl group and one of the hydroxyl oxygens of the tartrate ligand was also observed. The bridging interactions, coupled with the inherently stronger C-F bond in the difluoromethyl group, offers an explanation for why no reaction is observed.


Assuntos
Adenosina/análogos & derivados , Proteínas de Bactérias/química , Oxirredutases/química , Adenosina/síntese química , Adenosina/química , Calorimetria , Cristalografia por Raios X , Metionina/química , Selenometionina/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa