Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Res ; 251(Pt 2): 118640, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38479720

RESUMO

The effects of long-term ammunition pollution on microecological characteristics were analyzed to formulate microbial remediation strategies. Specifically, the response of enzyme systems, N/O stable isotopes, ion networks, and microbial community structure/function levels were analyzed in long-term (50 years) ammunition-contaminated water/sediments from a contamination site, and a compound bacterial agent capable of efficiently degrading trinitrotoluene (TNT) while tolerating many heavy metals was selected to remediate the ammunition-contaminated soil. The basic physical and chemical properties of the water/sediment (pH (up: 0.57-0.64), nitrate (up: 1.31-4.28 times), nitrite (up: 1.51-5.03 times), and ammonium (up: 7.06-70.93 times)) were changed significantly, and the significant differences in stable isotope ratios of N and O (nitrate nitrogen) confirmed the degradability of TNT by indigenous microorganisms exposed to long-term pollution. Heavy metals, such as Pb, Zn, Cu, Cd, Cs, and Sb, have synergistic toxic effects in ammunition-contaminated sites, and significantly decreased the microbial diversity and richness in the core pollution area. However, long-term exposure in the edge pollution area induced microorganisms to use TNT as a carbon and nitrogen sources for life activities and growth and development. The Bacteroidales microbial group was significantly inhibited by ammunition contamination, whereas microorganisms such as Proteobacteria, Acidobacteriota, and Comamonadaceae gradually adapted to this environmental stress by regulating their development and stress responses. Ammunition pollution significantly affected DNA replication and gene regulation in the microecological genetic networks and increased the risk to human health. Mg and K were significantly involved in the internal mechanism of microbial transport, enrichment, and metabolism of TNT. Nine strains of TNT-utilizing microbes were screened for efficient TNT degradation and tolerance to typical heavy metals (copper, zinc and lead) found in contaminated sites, and a compound bacterial agent prepared for effective repair of ammunition-contaminated soil significantly improved the soil ecological environment.


Assuntos
Sedimentos Geológicos , Poluentes Químicos da Água , China , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade , Sedimentos Geológicos/microbiologia , Sedimentos Geológicos/química , Biodegradação Ambiental , Metais Pesados/toxicidade , Metais Pesados/análise , Bactérias/metabolismo , Substâncias Explosivas/metabolismo , Trinitrotolueno/metabolismo
2.
Redox Biol ; 72: 103082, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38527399

RESUMO

The explosive compound 2,4,6-trinitrotoluene (TNT) is well known as a major component of munitions. In addition to its potential carcinogenicity and mutagenicity in humans, recent reports have highlighted TNT toxicities in diverse organisms due to its occurrence in the environment. These toxic effects have been linked to the intracellular metabolism of TNT, which is generally characterised by redox cycling and the generation of noxious reactive molecules. The reactive intermediates formed, such as nitroso and hydroxylamine compounds, also interact with oxygen molecules and cellular components to cause macromolecular damage and oxidative stress. The current review aims to highlight the crucial role of TNT metabolism in mediating TNT toxicity, via increased generation of reactive oxygen species. Cellular proliferation of reactive species results in depletion of cellular antioxidant enzymes, DNA and protein adduct formation, and oxidative stress. While TNT toxicity is well known, its ability to induce oxidative stress, resulting from its reductive activation, suggests that some of its toxic effects may be caused by its reactive metabolites. Hence, further research on TNT metabolism is imperative to elucidate TNT-induced toxicities.


Assuntos
Estresse Oxidativo , Espécies Reativas de Oxigênio , Trinitrotolueno , Trinitrotolueno/metabolismo , Trinitrotolueno/toxicidade , Humanos , Espécies Reativas de Oxigênio/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Ativação Metabólica , Animais , Substâncias Explosivas/metabolismo , Substâncias Explosivas/toxicidade , Oxirredução
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa