Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.693
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Transfusion ; 64(6): 1161-1166, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38682958

RESUMO

BACKGROUND: A 54-year-old Hispanic OPos female with known history of anti-Rh17 antibodies was diagnosed with Philadelphia-Chromosome positive (Ph+) acute lymphoblastic leukemia (ALL). Rh17, also known as Hr0, is a high-frequency antigen composed of several epitopes on the RhCE protein. Anti-Rh17 antibodies can be made by individuals with missing or varied C/c, E/e antigens. Anti-Rh17 antibodies are clinically significant given multiple case reports of hemolytic disease of the fetus and newborn (HDFN). Finding compatible units for patients with anti-Rh17 can be particularly difficult given that only 1 in 100,000 people are Rh17 negative. STUDY DESIGN AND METHODS: Search for compatible units was conducted by the American Rare Donor Program (ARDP) with no leads. After chemotherapy induction and despite erythropoiesis stimulating agent administration, the patient's hemoglobin continued to trend down to a nadir of 2.8 g/dL. Here we report transfusion of incompatible pRBC to this patient with critically symptomatic anemia. HBOC-201 (Hemopure) was obtained and administered under an emergency compassionate/expanded access designation from the Food and Drug Administration (FDA) under an emergency Investigational New Drug (IND) application. RESULTS AND DISCUSSION: Overall difficulties in this case included the challenge of finding compatible units, dilemma of transfusing incompatible units in a patient with severe anemia and obtaining alternatives to blood products. This case report demonstrates the successful use of HBOC-21 in treating life-threatening anemia.


Assuntos
Hemoglobinas , Humanos , Feminino , Pessoa de Meia-Idade , Isoanticorpos/imunologia , Sistema do Grupo Sanguíneo Rh-Hr/imunologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Substitutos Sanguíneos/uso terapêutico , Transfusão de Eritrócitos
2.
J Surg Res ; 301: 248-258, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38970873

RESUMO

INTRODUCTION: Normothermic machine perfusion (NMP) of donor kidneys provides the opportunity to assess and improve organ viability prior to transplantation. This study explored the necessity of an oxygen carrier during NMP and whether the hemoglobin-based oxygen carrier (HBOC-201) is a suitable alternative to red blood cells (RBCs). METHODS: Porcine kidneys were perfused with a perfusion solution containing either no-oxygen carrier, RBCs, or HBOC-201 for 360 min at 37°C. RESULTS: Renal flow and resistance did not differ significantly between groups. NMP without an oxygen carrier showed lower oxygen consumption with higher lactate and aspartate aminotransferase levels, indicating that the use of an oxygen carrier is necessary for NMP. Cumulative urine production and creatinine clearance in the RBC group were significantly higher than in the HBOC-201 group. Oxygen consumption, injury markers, and histology did not differ significantly between these two groups. However, methemoglobin levels increased to 45% after 360 min in the HBOC-201 group. CONCLUSIONS: We conclude that HBOC-201 could be used as an alternative for RBCs, but accumulating methemoglobin levels during our perfusions indicated that HBOC-201 is probably less suitable for prolonged NMP. Perfusion with RBCs, compared to HBOC-201, resulted in more favorable renal function during NMP.


Assuntos
Substitutos Sanguíneos , Eritrócitos , Hemoglobinas , Rim , Perfusão , Animais , Hemoglobinas/análise , Hemoglobinas/administração & dosagem , Rim/irrigação sanguínea , Substitutos Sanguíneos/farmacologia , Substitutos Sanguíneos/administração & dosagem , Perfusão/métodos , Eritrócitos/metabolismo , Suínos , Consumo de Oxigênio , Preservação de Órgãos/métodos , Oxigênio/metabolismo , Oxigênio/administração & dosagem , Oxigênio/sangue , Transplante de Rim/métodos , Metemoglobina/análise , Metemoglobina/metabolismo
3.
Platelets ; 35(1): 2316743, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38390892

RESUMO

Microfluidic technology has emerged as a powerful tool in studying arterial thrombosis, allowing researchers to construct artificial blood vessels and replicate the hemodynamics of blood flow. This technology has led to significant advancements in understanding thrombosis and platelet adhesion and aggregation. Microfluidic models have various types and functions, and by studying the fabrication methods and working principles of microfluidic chips, applicable methods can be selected according to specific needs. The rapid development of microfluidic integrated system and modular microfluidic system makes arterial thrombosis research more diversified and automated, but its standardization still needs to be solved urgently. One key advantage of microfluidic technology is the ability to precisely control fluid flow in microchannels and to analyze platelet behavior under different shear forces and flow rates. This allows researchers to study the physiological and pathological processes of blood flow, shedding light on the underlying mechanisms of arterial thrombosis. In conclusion, microfluidic technology has revolutionized the study of arterial thrombosis by enabling the construction of artificial blood vessels and accurately reproducing hemodynamics. In the future, microfluidics will place greater emphasis on versatility and automation, holding great promise for advancing antithrombotic therapeutic and prophylactic measures.


What is the context? To study the mechanism of arterial thrombosis, including the platelet adhesion and aggregation behavior and the coagulation process.Microfluidic technology is commonly used to study thrombosis. Microfluidic technology can simulate the real physiological environment on the microscopic scale in vitro, with high throughput, low cost, and fast speed.As an innovative experimental platform, microfluidic technology has made remarkable progress and has found applications in the fields of biology and medicine.What is new? This review summarizes the different fabrication methods of microfluidics and compares the advantages and disadvantages of these methods. Recent developments in microfluidic integrated systems and modular microfluidic systems have led to more diversified and automated microfluidic chips in the future.The different types and functions of microfluidic models are summarized. Platelet adhesion aggregation and coagulation processes, as well as arterial thrombus-related shear force changes and mechanical behaviors, were investigated by constructing artificial blood vessels and reproducing hemodynamics.Microfluidics can provide a basis for the development of personalized thrombosis treatment strategies. By analyzing the mechanism of action of existing drugs, using microfluidic technology for high-throughput screening of drugs and evaluating drug efficacy, more drug therapy possibilities can be developed.What is the impact?This review utilizes microfluidics to further advance the study of arterial thrombosis, and microfluidics is also expected to play a greater role in the biomedical field in the future.


Assuntos
Substitutos Sanguíneos , Trombose , Humanos , Microfluídica/métodos , Plaquetas/patologia , Trombose/patologia , Adesividade Plaquetária
4.
J Nanobiotechnology ; 22(1): 336, 2024 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-38880905

RESUMO

Oxygen is necessary for life and plays a key pivotal in maintaining normal physiological functions and treat of diseases. Hemoglobin-based oxygen carriers (HBOCs) have been studied and developed as a replacement for red blood cells (RBCs) in oxygen transport due to their similar oxygen-carrying capacities. However, applications of HBOCs are hindered by vasoactivity, oxidative toxicity, and a relatively short circulatory half-life. With advancements in nanotechnology, Hb encapsulation, absorption, bioconjugation, entrapment, and attachment to nanomaterials have been used to prepare nanomaterial-related HBOCs to address these challenges and pend their application in several biomedical and therapeutic contexts. This review focuses on the progress of this class of nanomaterial-related HBOCs in the fields of hemorrhagic shock, ischemic stroke, cancer, and wound healing, and speculates on future research directions. The advancements in nanomaterial-related HBOCs are expected to lead significant breakthroughs in blood substitutes, enabling their widespread use in the treatment of clinical diseases.


Assuntos
Substitutos Sanguíneos , Hemoglobinas , Lipossomos , Nanoestruturas , Oxigênio , Humanos , Hemoglobinas/química , Hemoglobinas/metabolismo , Substitutos Sanguíneos/química , Oxigênio/química , Animais , Nanoestruturas/química , Lipossomos/química , Nanocápsulas/química , Cicatrização/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Choque Hemorrágico/tratamento farmacológico
5.
Bull Exp Biol Med ; 176(6): 709-715, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38888647

RESUMO

The review presents the results of the blood substitute development based on perfluororganic compounds (PFC). The limitations of PFC due to which their further development was suspended are described. The presented data allows us to imagine a possible way to create optimal drugs based on PFC. Chemically inactive perfluorocomponents should be used - perfluorinated hydrocarbons and tertiary perfluorinated amines. However, in order to emulsify and stabilize the emulsion, other types of effective and chemically indifferent surfactants that do not interact with oxygen and other components of the drug are needed.


Assuntos
Substitutos Sanguíneos , Fluorocarbonos , Fluorocarbonos/química , Humanos , Tensoativos/química , Tensoativos/farmacologia , Emulsões/química , Oxigênio/química , Animais
6.
Kyobu Geka ; 77(3): 213-216, 2024 Mar.
Artigo em Japonês | MEDLINE | ID: mdl-38465494

RESUMO

Formation of a pseudoaneurysm due to blood leakage from the anastomotic site of the vascular graft in large-diameter vessels is often seen, but formation of a pseudoaneurysm from the non-anastomotic site is extremely rare. A 68-year-old woman presented with a history of double valve replacement for combined valvular disease at 37 years old and hemiarch replacement for thoracic aortic dilatation at 65 years old. She visited the emergency room with a 2-week history of chest pain. Contrast-enhanced computed tomography (CT) revealed a 5-cm-diameter pseudoaneurysm and extravasation from the ascending aorta, so emergency surgery was performed. Around the ascending aorta area, we confirmed bleeding from a 5-mm dehiscence in the non-anastomotic part of the graft prosthesis, so hemostasis was performed with a cross-stitch mattress suture over a felt strip. Initially, the cause of the pseudoaneurysm was unknown, but re-examination of CT images from after the previous hemiarch replacement confirmed contact between the sternal wire and graft prosthesis. The wire was thus considered to have caused damage and bleeding. The patient was discharged from the hospital with a good postoperative course and is being followed-up in the outpatient department.


Assuntos
Falso Aneurisma , Implante de Prótese Vascular , Idoso , Feminino , Humanos , Falso Aneurisma/diagnóstico por imagem , Falso Aneurisma/etiologia , Falso Aneurisma/cirurgia , Aorta/cirurgia , Substitutos Sanguíneos , Implante de Prótese Vascular/efeitos adversos
7.
Khirurgiia (Mosk) ; (2): 111-117, 2024.
Artigo em Russo | MEDLINE | ID: mdl-38344968

RESUMO

The article is devoted to historiography of perfluorocarbons, as well as discoverers of perftorane and their discoveries. There would be no national priority in transfusiology without these discoveries. Perftorane is the only one of the world series of perfluorocarbon emulsion drugs that has passed all phases of clinical trials. Perftorane has been used in clinical medicine for 30 years.


Assuntos
Substitutos Sanguíneos , Fluorocarbonos , Humanos , Substitutos Sanguíneos/uso terapêutico , Fluorocarbonos/uso terapêutico
8.
Mol Pharm ; 20(9): 4373-4386, 2023 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-37579000

RESUMO

Ischemia or hypoxia can lead to pathological changes in the metabolism and function of tissues and then lead to various diseases. Timely and effective blood resuscitation or improvement of hypoxia is very important for the treatment of diseases. However, there is a need to develop stable, nontoxic, and immunologically inert oxygen carriers due to limitations such as blood shortages, different blood types, and the risk of transmitting infections. With the development of various technologies, oxygen carriers based on hemoglobin and perfluorocarbon have been widely studied in recent years. This paper reviews the development and application of hemoglobin and perfluorocarbon oxygen carriers. The design of oxygen carriers was analyzed, and their application as blood substitutes or oxygen carriers in various hypoxic diseases was discussed. Finally, the characteristics and future research of ideal oxygen carriers were prospected to provide reference for follow-up research.


Assuntos
Substitutos Sanguíneos , Fluorocarbonos , Humanos , Oxigênio , Hemoglobinas , Hipóxia
9.
Biomacromolecules ; 24(9): 4138-4147, 2023 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-37640397

RESUMO

Small-diameter artificial blood vessels are increasingly being used in clinical practice. However, these vessels are prone to thrombus, and it is necessary to improve blood compatibility. Surface coating is one of the commonly used methods in this regard. Inspired by the biomimicry of mussels, the use of deposition technology to obtain coating coverage on the surface of fibers has significantly piqued the interest of researchers recently. In this study, tubular scaffolds consisting of a composite of poly(caprolactone), cellulose acetate, and tannic acid (TA) were electrospun, and then the scaffolds were treated with different Fe(III) solutions (iron(III) chloride hexahydrate (FeCl3'6H2O)) to obtain four tubular scaffolds: F0, F5, F15, and F45. According to scanning electron microscopy (SEM) and field emission-SEM results, TA/Fe(III) complex is coated on the fiber of the scaffold after post-treatment; the fiber surface morphology changes with different Fe(III) concentrations. This provides designability to the performance of tubular scaffolds. The tensile strength of the F5 tubular scaffold (3.33 MPa) is higher than that of F45 (3.14 MPa), while the strain (83.9%) of the F45 tubular stent was 2.26 times that of the F5 (37.2%). In addition, cytotoxicity and antithrombotic performance were evaluated. The test results show that surface TA/Fe(III) coating treatment can affect the cytotoxicity and anticoagulation performance of the scaffold surface. The biomimetic TA/Fe(III) coating of mussels used in this study improves the performance of artificial blood vessels.


Assuntos
Substitutos Sanguíneos , Compostos Férricos , Poli A
10.
Biomacromolecules ; 24(4): 1855-1870, 2023 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-36877888

RESUMO

Red blood cell (RBC) substitutes tested in late-phase clinical trials contained low-molecular-weight hemoglobin species (<500 kDa), resulting in vasoconstriction, hypertension, and oxidative tissue injury; therefore, contributing to poor clinical outcomes. This work aims to improve the safety profile of the RBC substitute, polymerized human hemoglobin (PolyhHb), via in vitro and in vivo screening of PolyhHb fractionated into four molecular weight brackets (50-300 kDa [PolyhHb-B1]; 100-500 kDa [PolyhHb-B2]; 500-750 kDa [PolyhHb-B3]; and 750 kDa to 0.2 µm [PolyhHb-B4]) using a two-stage tangential flow filtration purification process. Analysis showed that PolyhHb's oxygen affinity, and haptoglobin binding kinetics decreased with increasing bracket size. A 25% blood-for-PolyhHb exchange transfusion guinea pig model suggests that hypertension and tissue extravasation decreased with increasing bracket size. PolyhHb-B3 demonstrated extended circulatory pharmacokinetics, no renal tissue distribution, no aberrant blood pressure, or cardiac conduction effects, and may therefore be appropriate material for further evaluation.


Assuntos
Substitutos Sanguíneos , Hemoglobinas , Humanos , Animais , Cobaias , Hemoglobinas/química , Oxigênio/metabolismo , Polimerização , Substitutos Sanguíneos/farmacologia , Eritrócitos/metabolismo
11.
Biomacromolecules ; 24(5): 2022-2029, 2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-37027799

RESUMO

Hemoglobin-based oxygen carriers (HBOCs) are being developed to overcome limitations associated with transfusion of donated red blood cells (RBCs) such as potential transmission of blood-borne pathogens and limited ex vivo storage shelf-life. Annelid erythrocruorin (Ec) derived from the worm Lumbricus terrestris (Lt) is an acellular mega-hemoglobin that has shown promise as a potential HBOC due to the large size of its oligomeric structure, thus overcoming limitations of unmodified circulating cell-free hemoglobin (Hb). With a large molecular weight of 3.6 MDa compared to 64.5 kDa for human Hb (hHb) and 144 oxygen-binding globin subunits compared to the 4 globin subunits of hHb, LtEc does not extravasate from the circulation to the same extent as hHb. LtEc is stable in the circulation without RBC membrane encapsulation and has a lower rate of auto-oxidation compared to acellular hHb, which allows the protein to remain functional for longer periods of time in the circulation compared to HBOCs derived from mammalian Hbs. Surface coatings, such as poly(ethylene glycol) (PEG) and oxidized dextran (Odex), have been investigated to potentially reduce the immune response and improve the circulation time of LtEc in vivo. Polydopamine (PDA) is a hydrophilic, biocompatible, bioinspired polymer coating used for biomedical nanoparticle assemblies and coatings and has previously been investigated for the surface coating of hHb. PDA is typically synthesized via the self-polymerization of dopamine (DA) under alkaline (pH > 8.0) conditions. However, at pH > 8.0, the oligomeric structure of LtEc begins to dissociate. Therefore, in this study, we investigated a photocatalytic method of PDA polymerization on the surface of LtEc using 9-mesityl-10-methylacridinium tetrafluoroborate (Acr-Mes) to drive PDA polymerization under physiological conditions (pH 7.4, 25 °C) over 2, 5, and 16 h in order to preserve the size and structure of LtEc. The resulting structural, biophysical, and antioxidant properties of PDA surface-coated LtEc (PDA-LtEc) was characterized using various techniques. PDA-LtEc showed an increase in measured particle size, molecular weight, and surface ζ-potential with increasing reaction time from t = 2 to 16 h compared to unmodified LtEc. PDA-LtEc reacted for 16 h was found to have reduced oxygen-binding cooperativity and slower deoxygenation kinetics compared to PDA-LtEc with lower levels of polymerization (t = 2 h), but there was no statistically significant difference in oxygen affinity. The thickness of the PDA coating can be controlled and in turn the biophysical properties can be tuned by changing various reaction conditions. PDA-LtEc was shown to demonstrate an increased level of antioxidant capacity (ferric iron reduction and free-radical scavenging) when synthesized at a reaction time of t = 16 h compared to LtEc. These antioxidant properties may prove beneficial for oxidative protection of PDA-LtEc during its time in the circulation. Hence, we believe that PDA-LtEc is a promising oxygen therapeutic for potential use in transfusion medicine applications.


Assuntos
Antioxidantes , Substitutos Sanguíneos , Animais , Humanos , Antioxidantes/farmacologia , Antioxidantes/química , Oxigênio/química , Substitutos Sanguíneos/farmacologia , Substitutos Sanguíneos/química , Hemoglobinas/química , Polímeros/química , Mamíferos/metabolismo
12.
Soft Matter ; 19(20): 3711-3722, 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37190902

RESUMO

Understanding the behaviour of human blood outside of the body has important implications in forensic research, especially related to bloodstain pattern analysis (BPA). The design of forensic blood substitutes (FBSs) can provide many advantages, including the incorporation of multiple physiological components for use as safe and reliable materials for forensic applications. In this work, we present the design of synthetic alginate and xanthan gum-based hydrogels that contain electrosprayed microparticles (MPs) with and without crosslinked DNA. In addition to the MPs, the alginate/xanthan gum FBS materials include fillers to alter the physical appearance and fluid properties of the material. The optimized FBS consisted of alginate (1% w/v) and xanthan gum (5.0 × 10-3% w/v), 2 mM CaCl2, ferric citrate (0.5% w/v), magnesium silicate (0.25% w/v), Allura Red dye (2% w/v), 0.025% v/v Tween 20 and 9.5% v/v MPs. The FBS was tested in passive dripping experiments relevant to BPA scenarios at various impact angles. The spreading ratio (Ds/D0) was determined for 90° stains made on a paper surface and compared to bovine blood where the FBS was shown to simulate accurate and predictable spreading behaviour. In addition, we simulated other common BPA scenarios (e.g., impact patterns) and evidence processing potential. The FBS could be swabbed, and the DNA could be extracted, amplified, and genotyped analogous to human blood evidence. A stability test was also conducted which revealed a shelf-life of over 4 weeks where the material remains relevant to human blood at physiological temperature.


Assuntos
Manchas de Sangue , Substitutos Sanguíneos , Animais , Bovinos , Humanos , Hidrogéis , Alginatos , Polissacarídeos Bacterianos
13.
Int J Mol Sci ; 24(19)2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37834350

RESUMO

The search for a clinically affordable substitute of human blood for transfusion is still an unmet need of modern society. More than 50 years of research on acellular hemoglobin (Hb)-based oxygen carriers (HBOC) have not yet produced a single formulation able to carry oxygen to hemorrhage-challenged tissues without compromising the body's functions. Of the several bottlenecks encountered, the high reactivity of acellular Hb with circulating nitric oxide (NO) is particularly arduous to overcome because of the NO-scavenging effect, which causes life-threatening side effects as vasoconstriction, inflammation, coagulopathies, and redox imbalance. The purpose of this manuscript is not to add a review of candidate HBOC formulations but to focus on the biochemical and physiological events that underly NO scavenging by acellular Hb. To this purpose, we examine the differential chemistry of the reaction of NO with erythrocyte and acellular Hb, the NO signaling paths in physiological and HBOC-challenged situations, and the protein engineering tools that are predicted to modulate the NO-scavenging effect. A better understanding of two mechanisms linked to the NO reactivity of acellular Hb, the nitrosylated Hb and the nitrite reductase hypotheses, may become essential to focus HBOC research toward clinical targets.


Assuntos
Substitutos Sanguíneos , Óxido Nítrico , Humanos , Óxido Nítrico/metabolismo , Oxigênio , Hemoglobinas/metabolismo , Eritrócitos/metabolismo
14.
Int J Mol Sci ; 24(2)2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36675142

RESUMO

The established blood donation and transfusion system has contributed a lot to human health and welfare, but for this system to function properly, it requires a sufficient number of healthy donors, which is not always possible. Pakistan was a country hit hardest by COVID-19 which additionally reduced the blood donation rates. In order to address such challenges, the present study focused on the development of RBC substitutes that can be transfused to all blood types. This paper reports the development and characterization of RBC substitutes by combining the strategies of conjugated and encapsulated hemoglobin where magnetite nanoparticles would act as the carrier of hemoglobin, and liposomes would separate internal and external environments. The interactions of hemoglobin variants with bare magnetite nanoparticles were studied through molecular docking studies. Moreover, nanoparticles were synthesized, and hemoglobin was purified from blood. These components were then used to make conjugates, and it was observed that only the hemoglobin HbA1 variant was making protein corona. These conjugates were then encapsulated in liposomes to make negatively charged RBC substitutes with a size range of 1-2 µm. Results suggest that these RBC substitutes work potentially in a similar way as natural RBCs work and can be used in the time of emergency.


Assuntos
Substitutos Sanguíneos , COVID-19 , Nanopartículas de Magnetita , Humanos , Lipossomos , Oxigênio/metabolismo , Simulação de Acoplamento Molecular , Hemoglobinas/metabolismo , Eritrócitos/metabolismo
15.
Medicina (Kaunas) ; 59(2)2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36837597

RESUMO

The pursuit for blood a substitute has spanned over a century, but a majority of the efforts have been disappointing. As of today, there is no widely accepted product used as an alternative to human blood in clinical settings with severe anemic condition(s). Blood substitutes are currently also termed oxygen therapeutics. There are two major categories of oxygen therapeutics, hemoglobin-based and perfluorocarbon-based products. In this article, we reviewed the most developed but failed products and products still in active clinical research in the category of hemoglobin-based oxygen carriers. Among all of the discussed hemoglobin-based oxygen therapeutics, HemAssist, PolyHeme, Hemolink, Hemospan, and Hemoximer were discontinued. Hemopure is in clinical use in South Africa and Russia. Oxyglobin, the sister product of Hemopure, has been approved for veterinary use in the European Union and the United States. HemO2life has recently been approved for organ preservation in organ transplantation in the European Union. OxyVita and Sanguinate are still undergoing active clinical studies. The field of oxygen therapeutics seems to be entering a phase of rapid growth in the coming 10-20 years.


Assuntos
Anemia , Substitutos Sanguíneos , Fluorocarbonos , Humanos , Estados Unidos , Oxigênio , Hemoglobinas
16.
Opt Express ; 30(18): 32051-32060, 2022 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-36242274

RESUMO

We demonstrate a short-wave infrared computed tomography method. It uses a fiber-coupled 1.44µm super-luminescent diode as light source, a PbSe photodiode as infrared detector, and an electronically controlled rotation and translation stage for high-speed Radon scanning. It is a safe and low power nondestructive testing method that can be used for the detection of plastic polymers, biological tissue and other materials that visible light cannot penetrate. We analyze the theoretical resolution of the method and build a short-wave infrared computed tomography system, which realizes the tomography and 3D reconstruction of black plastic bottles and artificial blood vessels. The measured resolution reaches10µm.


Assuntos
Substitutos Sanguíneos , Radônio , Plásticos , Tomografia Computadorizada por Raios X
17.
Transfusion ; 62 Suppl 1: S218-S223, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35748693

RESUMO

BACKGROUND: Hemorrhagic shock is a clinically challenging disease process with high mortality. When conventional blood products are unable to be administered, oxygen-carrying blood alternatives are sometimes utilized. The international experience with this scenario is limited. We aim to add to this body of literature. STUDY DESIGN AND METHODS: This is a case report of the administration of bovine hemoglobin-based oxygen-carrying red blood cell (RBC) substitute HBOC-201 (HemoPure®) to a patient with post-partum bleeding and hemorrhagic shock because the patient declined RBC transfusion. HBOC-201 was administered with consent under a one-time Emergency Investigational New Drug (eIND) approval from the Food and Drug Administration with appropriate notification of the Institutional Review Board. RESULTS: The patient was successfully resuscitated with HBOC-201 from hemorrhagic shock. She was weaned off of vasopressor support and extubated with the recovery of her baseline mental status within 4 h. However, approximately 36 h after this, the patient developed multi-organ system dysfunction, volume overload, right heart failure and ultimately expired early on post-partum day 4. DISCUSSION: Resuscitation from hemorrhagic shock with HBOC-201 as an RBC alternative is feasible, but significant challenges remain with the management of sequelae resulting from prolonged low-flow, ischemic states as well as the significant colloid pressure and volume overload experienced after massive transfusion with an acellular colloid oxygen carrier.


Assuntos
Substitutos Sanguíneos , Obstetrícia , Choque Hemorrágico , Substitutos Sanguíneos/uso terapêutico , Feminino , Hemoglobinas/uso terapêutico , Humanos , Oxigênio , Ressuscitação/métodos , Choque Hemorrágico/terapia
18.
Biotechnol Bioeng ; 119(12): 3447-3461, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36120842

RESUMO

Polymerized human hemoglobin (PolyhHb) is being studied as a possible red blood cell (RBC) substitute for use in scenarios where blood is not available. While the oxygen (O2 ) carrying capacity of PolyhHb makes it appealing as an O2 therapeutic, the commercial PolyhHb PolyHeme® (Northfield Laboratories Inc.) was never approved for clinical use due to the presence of large quantities of low molecular weight (LMW) polymeric hemoglobin (Hb) species (<500 kDa), which have been shown to elicit vasoconstriction, systemic hypertension, and oxidative tissue injury in vivo. Previous bench-top scale studies in our lab demonstrated the ability to synthesize and purify PolyhHb using a two-stage tangential flow filtration purification process to remove almost all undesirable Hb species (>0.2 µm and <500 kDa) in the material, to create a product that should be safer for transfusion. Therefore, to enable future large animal studies and eventual human clinical trials, PolyhHb synthesis and purification processes need to be scaled up to the pilot scale. Hence in this study, we describe the pilot scale synthesis and purification of PolyhHb. Characterization of pilot scale PolyhHb showed that PolyhHb could be successfully produced to yield biophysical properties conducive for its use as an RBC substitute. Size exclusion high performance liquid chromatography showed that pilot scale PolyhHb yielded a high molecular weight Hb polymer containing a small percentage of LMW Hb species (<500 kDa). Additionally, the auto-oxidation rate of pilot scale PolyhHb was even lower than that of previous generations of PolyhHb. Taken together, these results demonstrate that PolyhHb has the ability to be seamlessly manufactured at the pilot scale to enable future large animal studies and clinical trials.


Assuntos
Substitutos Sanguíneos , Hemoglobinas , Animais , Humanos , Substitutos Sanguíneos/síntese química , Hemoglobinas/síntese química , Peso Molecular
19.
Biotechnol Bioeng ; 119(1): 176-186, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34672363

RESUMO

Various types of hemoglobin (Hb)-based oxygen carriers (HBOCs) have been developed as red blood cell substitutes for treating blood loss when blood is not available. Among those HBOCs, glutaraldehyde polymerized Hbs have attracted significant attention due to their facile synthetic route, and ability to expand the blood volume and deliver oxygen. Hemopure®, Oxyglobin®, and PolyHeme® are the most well-known commercially developed glutaraldehyde polymerized Hbs. Unfortunately, only Oxyglobin® was approved by the FDA for veterinary use in the United States, while Hemopure® and PolyHeme® failed phase III clinical trials due to their ability to extravasate from the blood volume into the tissue space which facilitated nitric oxide scavenging and tissue deposition of iron, which elicited vasoconstriction, hypertension and oxidative tissue injury. Fortunately, conjugation of poly (ethylene glycol) (PEG) on the surface of Hb is capable of reducing the vasoactivity of Hb by creating a hydration layer surrounding the Hb molecule, which increases its hydrodynamic diameter and reduces tissue extravasation. Several commercial PEGylated Hbs (MP4®, Sanguinate®, Euro-PEG-Hb) have been developed for clinical use with a longer circulatory half-life and improved safety compared to Hb. However, all of these commercial products exhibited relatively high oxygen affinity compared to Hb, which limited their clinical use. To dually address the limitations of prior generations of polymerized and PEGylated Hbs, this current study describes the PEGylation of polymerized bovine Hb (PEG-PolybHb) in both the tense (T) and relaxed (R) quaternary state via thiol-maleimide chemistry to produce an HBOC with low or high oxygen affinity. The biophysical properties of PEG-PolybHb were measured and compared with those of commercial polymerized and PEGylated HBOCs. T-state PEG-PolybHb possessed higher hydrodynamic volume and P50 than previous generations of commercial PEGylated Hbs. Both T- and R-state PEG-PolybHb exhibited significantly lower haptoglobin binding rates than the precursor PolybHb, indicating potentially reduced clearance by CD163 + monocytes and macrophages. Thus, T-state PEG-PolybHb is expected to function as a promising HBOC due to its low oxygen affinity and enhanced stealth properties afforded by the PEG hydration shell.


Assuntos
Substitutos Sanguíneos , Filtração/métodos , Hemoglobinas , Oxigênio/metabolismo , Polietilenoglicóis , Animais , Substitutos Sanguíneos/análise , Substitutos Sanguíneos/química , Substitutos Sanguíneos/isolamento & purificação , Bovinos , Hemoglobinas/análise , Hemoglobinas/química , Hemoglobinas/isolamento & purificação , Cinética , Peso Molecular , Polietilenoglicóis/análise , Polietilenoglicóis/química , Polietilenoglicóis/isolamento & purificação , Propriedades de Superfície
20.
Mol Cell Biochem ; 477(12): 2773-2786, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35643877

RESUMO

The main goal of this study was to investigate the cardioprotective properties in terms of effects on cardiodynamics of perfluorocarbon emulsion (PFE) in ex vivo-induced ischemia-reperfusion injury of an isolated rat heart. The first part of the study aimed to determine the dose of 10% perfluoroemulsion (PFE) that would show the best cardioprotective effect in rats on ex vivo-induced ischemia-reperfusion injury of an isolated rat heart. Depending on whether the animals received saline or PFE, the animals were divided into a control or experimental group. They were also grouped depending on the applied dose (8, 12, 16 ml/kg body weight) of saline or PFE. We observed the huge changes in almost all parameters in the PFE groups in comparison with IR group without any pre-treatment. Calculated in percent, dp/dt max was the most changed parameter in group treated with 8 mg/kg, while the dp/dt min, SLVP, DLVP, HR, and CF were the most changed in group treated with 16 mg/kg 10 h before ischemia. The effects of 10% PFE are more pronounced if there is a longer period of time from application to ischemia, i.e., immediate application of PFE before ischemia (1 h) gave the weakest effects on the change of cardiodynamics of isolated rat heart. Therefore, the future of PFE use is in new indications and application methods, and PFE can also be referred to as antihypoxic and antiischemic blood substitute with mild membranotropic effects.


Assuntos
Substitutos Sanguíneos , Fluorocarbonos , Traumatismo por Reperfusão Miocárdica , Ratos , Animais , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Fluorocarbonos/farmacologia , Substitutos Sanguíneos/farmacologia , Substitutos Sanguíneos/uso terapêutico , Fenômenos Fisiológicos Cardiovasculares
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa