Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Biochemistry ; 63(9): 1075-1088, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38602394

RESUMO

Aldehyde dehydrogenase enzymes (ALDHs) are widely studied for their roles in disease propagation and cell metabolism. Their use in biocatalysis applications, for the conversion of aldehydes to carboxylic acids, has also been recognized. Understanding the structural features and functions of both prokaryotic and eukaryotic ALDHs is key to uncovering novel applications of the enzyme and probing its role in disease propagation. The thermostable enzyme ALDHTt originating fromThermus thermophilus, strain HB27, possesses a unique extension of its C-terminus, which has been evolutionarily excluded from mesophilic counterparts and other thermophilic enzymes in the same genus. In this work, the thermophilic adaptation is studied by the expression and optimized purification of mutant ALDHTt-508, with a 22-amino acid truncation of the C-terminus. The mutant shows increased activity throughout production compared to native ALDHTt, indicating an opening of the active site upon C-terminus truncation and giving rationale into the evolutionary exclusion of the C-terminal extension from similar thermophilic and mesophilic ALDH proteins. Additionally, the C-terminus is shown to play a role in controlling substrate specificity of native ALDH, particularly in excluding catalysis of certain large and certain aromatic ortho-substituted aldehydes, as well as modulating the protein's pH tolerance by increasing surface charge. Dynamic light scattering and size-exclusion HPLC methods are used to show the role of the C-terminus in ALDHTt oligomeric stability at the cost of catalytic efficiency. Studying the aggregation rate of ALDHTt with and without a C-terminal extension leads to the conclusion that ALDHTt follows a monomolecular reaction aggregation mechanism.


Assuntos
Aldeído Desidrogenase , Estabilidade Enzimática , Thermus thermophilus , Thermus thermophilus/enzimologia , Aldeído Desidrogenase/química , Aldeído Desidrogenase/metabolismo , Aldeído Desidrogenase/genética , Especificidade por Substrato , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Multimerização Proteica , Cinética , Domínio Catalítico , Sequência de Aminoácidos
2.
Protein Expr Purif ; 223: 106557, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39009198

RESUMO

Nucleases play pivotal roles in DNA repair and apoptosis. Moreover, they have various applications in biotechnology and industry. Among nucleases, TatD has been characterized as an exonuclease with various biological functions in different organisms. Here, we biochemically characterized the potential TatD nuclease from Thermus thermophilus. The tatD gene from T. thermophilus was cloned, then the recombinant TatD nuclease was expressed and purified. Our results revealed that the TthTatD nuclease could degrade both single-stranded and double-stranded DNA, and its activity is dependent on the divalent metal ions Mg2+ and Mn2+. Remarkably, the activity of TthTatD nuclease is highest at 37 °C and decreases with increasing temperature. TthTatD is not a thermostable enzyme, even though it is from a thermophilic bacterium. Based on the sequence similarity and molecular docking of the DNA substrate into the modeled TthTatD structure, several key conserved residues were identified and their roles were confirmed by analyzing the enzymatic activities of the site-directed mutants. The residues E86 and H149 play key roles in binding metal ions, residues R124/K126 and K211/R212 had a critical role in binding DNA substrate. Our results confirm the enzymatic properties of TthTatD and provide a primary basis for its possible application in biotechnology.


Assuntos
Proteínas de Bactérias , Thermus thermophilus , Thermus thermophilus/enzimologia , Thermus thermophilus/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/isolamento & purificação , Simulação de Acoplamento Molecular , Clonagem Molecular , Exodesoxirribonucleases/genética , Exodesoxirribonucleases/química , Exodesoxirribonucleases/metabolismo
3.
Microb Cell Fact ; 23(1): 169, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38858677

RESUMO

BACKGROUND: In vitro expression involves the utilization of the cellular transcription and translation machinery in an acellular context to produce one or more proteins of interest and has found widespread application in synthetic biology and in pharmaceutical biomanufacturing. Most in vitro expression systems available are active at moderate temperatures, but to screen large libraries of natural or artificial genetic diversity for highly thermostable enzymes or enzyme variants, it is instrumental to enable protein synthesis at high temperatures. OBJECTIVES: Develop an in vitro expression system operating at high temperatures compatible with enzymatic assays and with technologies that enable ultrahigh-throughput protein expression in reduced volumes, such as microfluidic water-in-oil (w/o) droplets. RESULTS: We produced cell-free extracts from Thermus thermophilus for in vitro translation including thermostable enzymatic cascades for energy regeneration and a moderately thermostable RNA polymerase for transcription, which ultimately limited the temperature of protein synthesis. The yield was comparable or superior to other thermostable in vitro expression systems, while the preparation procedure is much simpler and can be suited to different Thermus thermophilus strains. Furthermore, these extracts have enabled in vitro expression in microfluidic droplets at high temperatures for the first time. CONCLUSIONS: Cell-free extracts from Thermus thermophilus represent a simpler alternative to heavily optimized or pure component thermostable in vitro expression systems. Moreover, due to their compatibility with droplet microfluidics and enzyme assays at high temperatures, the reported system represents a convenient gateway for enzyme screening at higher temperatures with ultrahigh-throughput.


Assuntos
Biossíntese de Proteínas , Thermus thermophilus , Transcrição Gênica , Thermus thermophilus/genética , Thermus thermophilus/metabolismo , Thermus thermophilus/enzimologia , Microfluídica/métodos , Sistema Livre de Células , RNA Polimerases Dirigidas por DNA/metabolismo , RNA Polimerases Dirigidas por DNA/genética , Temperatura , Temperatura Alta , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética
4.
Protein Sci ; 33(6): e5028, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38757396

RESUMO

Prolyl-tRNA synthetase (ProRS), belonging to the family of aminoacyl-tRNA synthetases responsible for pairing specific amino acids with their respective tRNAs, is categorized into two distinct types: the eukaryote/archaeon-like type (E-type) and the prokaryote-like type (P-type). Notably, these types are specific to their corresponding cognate tRNAs. In an intriguing paradox, Thermus thermophilus ProRS (TtProRS) aligns with the E-type ProRS but selectively charges the P-type tRNAPro, featuring the bacterium-specific acceptor-stem elements G72 and A73. This investigation reveals TtProRS's notable resilience to the inhibitor halofuginone, a synthetic derivative of febrifugine emulating Pro-A76, resembling the characteristics of the P-type ProRS. Furthermore, akin to the P-type ProRS, TtProRS identifies its cognate tRNA through recognition of the acceptor-stem elements G72/A73, along with the anticodon elements G35/G36. However, in contrast to the P-type ProRS, which relies on a strictly conserved R residue within the bacterium-like motif 2 loop for recognizing G72/A73, TtProRS achieves this through a non-conserved sequence, RTR, within the otherwise non-interacting eukaryote-like motif 2 loop. This investigation sheds light on the adaptive capacity of a typically conserved housekeeping enzyme to accommodate a novel substrate.


Assuntos
Aminoacil-tRNA Sintetases , RNA de Transferência de Prolina , Thermus thermophilus , Thermus thermophilus/química , Thermus thermophilus/enzimologia , Thermus thermophilus/genética , Aminoacil-tRNA Sintetases/química , Aminoacil-tRNA Sintetases/genética , Aminoacil-tRNA Sintetases/metabolismo , RNA de Transferência de Prolina/química , RNA de Transferência de Prolina/genética , RNA de Transferência de Prolina/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Sequências Repetidas Invertidas , Evolução Molecular , Leveduras/enzimologia , Inibidores da Síntese de Proteínas/farmacologia , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Piperidinas/farmacologia , Quinazolinonas/farmacologia
5.
Braz. j. microbiol ; 49(4): 848-855, Oct.-Dec. 2018. tab, graf
Artigo em Inglês | LILACS | ID: biblio-974300

RESUMO

ABSTRACT We studied the role of Thermus thermophilus Recombinase A (RecA) in enhancing the PCR signals of DNA viruses such as Hepatitis B virus (HBV). The RecA gene of a thermophilic eubacterial strain, T. thermophilus, was cloned and hyperexpressed in Escherichia coli. The recombinant RecA protein was purified using a single heat treatment step without the use of any chromatography steps, and the purified protein (>95%) was found to be active. The purified RecA could enhance the polymerase chain reaction (PCR) signals of HBV and improve the detection limit of the HBV diagnosis by real time PCR. The yield of recombinant RecA was ∼35 mg/L, the highest yield reported for a recombinant RecA to date. RecA can be successfully employed to enhance detection sensitivity for the diagnosis of DNA viruses such as HBV, and this methodology could be particularly useful for clinical samples with HBV viral loads of less than 10 IU/mL, which is interesting and novel.


Assuntos
Proteínas de Bactérias/genética , Vírus da Hepatite B/isolamento & purificação , Reação em Cadeia da Polimerase/métodos , Thermus thermophilus/enzimologia , Clonagem Molecular , Recombinases/genética , Proteínas de Bactérias/isolamento & purificação , Proteínas de Bactérias/metabolismo , Expressão Gênica , Vírus da Hepatite B/genética , Reação em Cadeia da Polimerase/instrumentação , Thermus thermophilus/genética , Recombinases/isolamento & purificação , Recombinases/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo
6.
West Indian med. j ; 62(1): 3-11, Jan. 2013. ilus, tab
Artigo em Inglês | LILACS | ID: biblio-1045580

RESUMO

Cytochrome c oxidase (COX) employs electrons obtained from cytochrome c to bring about the reduction of oxygen to water. It is known that the electrons originate from the haem edge of cytochrome c and enters bovine COX at Trp-104. It is also known that Tyr-105, Glu-198 and Asp-158 of COX subunit II play roles in the enzyme's catalysis but how these roles are linked to electron transfer remain unclear. Recently, we proposed that electrons travel from the haem edge of cytochrome c to CuA, the first metal redox centre of COX, by a hydrogen/hydride ion relay using six residues. Now using a similar computer assisted approach, we investigate the extent to which this hydride/hydrogen ion mechanism is common amongst oxidases. The crystal structures of COX from P denitrificans, R sphaeroides and T thermophilus and quinol oxidase from E coli were downloaded and their binding domains analysed. As with bovine, all four oxidases had only nine amino acid residues in that region and both the sequences and three-dimensional structures were highly conserved. We propose that these residues function as a hydrogen/hydride ion relay, participating directly in electron transfer to CuA. We further suggest that this electron transfer mechanism might be a common feature in oxidases.


La citocromo c oxidasa (COX) emplea electrones obtenidos del citocromo c para producir la reducción del oxígeno a agua. Se sabe que los electrones originan a partir del hemo del citocromo c, y entran en la COX bovina en Trp-104. También se conoce que Tyr-105, Glu-198 y Asp-158 de la subunidad II de COX, desempeñan papeles en la catálisis de la enzima, pero no hay todavía claridad en cuanto a cómo estos papeles se hallan vinculados con la transferencia de electrones. Recientemente, sugerimos que los electrones viajan del borde del hemo del citocromo c al CuA, el primer centro metálico de reacción redox de la COX, por un relé iónico hidrógeno-hidruro, usando seis residuos. Ahora, usando un enfoque similar computarizado, investigamos hasta que punto este mecanismo de iones hidrógeno/hidruro es común entre las oxidasas. Se bajaron y analizaron los dominios de unión de las estructuras cristalinas de la COX de P denitrificans, R sphaeroides, y T thermophilus, y de la quinol oxidasa de la E coli. Como en el caso de la bovina, las cuatro oxidasas tenían sólo nueve residuos de aminoácido en esa región, y tanto las secuencias como las estructuras tridimensionales presentaban un alto grado de conservación. Proponemos que estos residuos funcionan como un relé iónico hidrógeno-hidruro, participando directamente en una transferencia de electrones al CuA. Asimismo, sugerimos que este mecanismo de transferencia de electrones podría ser un rasgo común de las oxidasas.


Assuntos
Animais , Bovinos , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Citocromos c/metabolismo , Heme/química , Hidrogênio/metabolismo , Oxirredução , Paracoccus denitrificans/enzimologia , Prótons , Rhodobacter sphaeroides/enzimologia , Sequência de Aminoácidos , Thermus thermophilus/enzimologia , Escherichia coli/enzimologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa