RESUMO
The geometrical structure, electronic and optical properties, electronic absorption spectra, vibrational frequencies, natural charge distribution, MEP analysis and thermodynamic properties of the trans and cis structures of the drug thiothixene were investigated using density functional theory (DFT) and time-dependent DFT (TDDFT) methods with the B3LYP hybrid functional and 6-311 + G(d,p) basis set. The results of the calculations demonstrate that the cis structure of thiothixene has appropriate quantum properties that can act as an active medicine. The relative energies of trans and cis structures of thiothixene shows that the cis structure is more stable than the trans structure, with a small energy difference. TDDFT calculations show that the cis structure of thiothixene has the best absorption properties. The calculated NLO properties show that the NLO properties of the cis structure of thiothixene are higher than the trans structure, and the fact that the chemical hardness of the cis structure is lower than that of the trans structure that indicates that the reactivity and charge transfer of the cis isomer of thiothixene is higher than that of trans thiothixene. The molecular electrostatic potential (MEP) maps of both structures of thiothixene demonstrate that the oxygen atoms of the molecule are appropriate areas for electrophilic reactions. The vibrational frequencies of the two conformations of thiothixene demonstrate that both structures of thiothixene have almost similar modes of vibrations. The calculated thermodynamic parameters show that these quantities increase with enhancing temperature due to the enhancement of molecular vibrational intensities with temperature. Graphical abstract Trans/Cis isomerization of thiothixene drug.
Assuntos
Modelos Moleculares , Tiotixeno/química , Antipsicóticos/química , Antipsicóticos/farmacologia , Humanos , Estrutura Molecular , Esquizofrenia/tratamento farmacológico , Eletricidade Estática , Termodinâmica , Tiotixeno/farmacologiaRESUMO
We compare the rate of drug release through the degradation of 50:50 polylactic-co-glycolic acid polymer pellets, for six different drugs: Thiothixene, Haloperidol, Hydrochlorothiozide, Corticosterone, Ibuprofen, and Aspirin. Despite using the same polymer matrix and drug loading (20% by weight), we find that the rate of polymer degradation and the drug release profile differ significantly between the drugs. We conclude that the design of biodegradable polymeric drug carriers with high drug loadings must account for the effect of the drug on the polymer degradation and drug release rate.
Assuntos
Anti-Inflamatórios/química , Antipsicóticos/química , Materiais Biocompatíveis/química , Portadores de Fármacos , Ácido Láctico/química , Ácido Poliglicólico/química , Polímeros/química , Aspirina/química , Corticosterona/química , Preparações de Ação Retardada , Difusão , Haloperidol/química , Hidroclorotiazida/química , Hidrólise , Ibuprofeno/química , Cinética , Modelos Químicos , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Solubilidade , Tiotixeno/química , Fatores de TempoRESUMO
Hydrochloric thiothixene (HT) is an antipsychotic drug used in the treatment of various psychoses including schizophrenia, mania, polar disorder, and in behavior disturbances. However, because the psychotics often could not control their behaviors, the independent administration of antipsychotic drug based on medical order was difficult. The omissions of the administration often brought an unsatisfactory therapeutic efficacy. A novel injectable long-term control-released in situ gel of HT for the treatment of schizophrenia was developed based on biodegradable material polylactic acid (PLA). The optimum formulation of the injectable PLA-based HT in situ gel containing 15% (w/w) HT and 45% (w/w) PLA with benzyl benzoate was used as a gelling solvent. The results of the in vitro and in vivo studies showed that this in situ gel had a long-term period of drug release for several weeks and a good histocompatibility without any remarkable inflammatory reactions.