Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.240
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Mol Cell ; 83(12): 2122-2136.e10, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37267947

RESUMO

To spread, transposons must integrate into target sites without disruption of essential genes while avoiding host defense systems. Tn7-like transposons employ multiple mechanisms for target-site selection, including protein-guided targeting and, in CRISPR-associated transposons (CASTs), RNA-guided targeting. Combining phylogenomic and structural analyses, we conducted a broad survey of target selectors, revealing diverse mechanisms used by Tn7 to recognize target sites, including previously uncharacterized target-selector proteins found in newly discovered transposable elements (TEs). We experimentally characterized a CAST I-D system and a Tn6022-like transposon that uses TnsF, which contains an inactivated tyrosine recombinase domain, to target the comM gene. Additionally, we identified a non-Tn7 transposon, Tsy, encoding a homolog of TnsF with an active tyrosine recombinase domain, which we show also inserts into comM. Our findings show that Tn7 transposons employ modular architecture and co-opt target selectors from various sources to optimize target selection and drive transposon spread.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Elementos de DNA Transponíveis , Plasmídeos , Elementos de DNA Transponíveis/genética , Recombinases/genética , Tirosina/genética
2.
Mol Cell ; 80(6): 955-970.e7, 2020 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-33290744

RESUMO

Prokaryotic toxin-antitoxin (TA) systems are composed of a toxin capable of interfering with key cellular processes and its neutralizing antidote, the antitoxin. Here, we focus on the HEPN-MNT TA system encoded in the vicinity of a subtype I-D CRISPR-Cas system in the cyanobacterium Aphanizomenon flos-aquae. We show that HEPN acts as a toxic RNase, which cleaves off 4 nt from the 3' end in a subset of tRNAs, thereby interfering with translation. Surprisingly, we find that the MNT (minimal nucleotidyltransferase) antitoxin inhibits HEPN RNase through covalent di-AMPylation (diadenylylation) of a conserved tyrosine residue, Y109, in the active site loop. Furthermore, we present crystallographic snapshots of the di-AMPylation reaction at different stages that explain the mechanism of HEPN RNase inactivation. Finally, we propose that the HEPN-MNT system functions as a cellular ATP sensor that monitors ATP homeostasis and, at low ATP levels, releases active HEPN toxin.


Assuntos
Antitoxinas/genética , Toxinas Bacterianas/genética , Ribonucleases/genética , Sistemas Toxina-Antitoxina/genética , Monofosfato de Adenosina/genética , Antídotos/química , Antitoxinas/metabolismo , Aphanizomenon/química , Aphanizomenon/genética , Sistemas CRISPR-Cas/genética , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Ribonucleases/metabolismo , Tirosina/genética
3.
Genome Res ; 34(2): 201-216, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38467418

RESUMO

DNA damage triggers a complex transcriptional response that involves both activation and repression of gene expression. In this study, we investigated global changes in transcription in response to ionizing irradiation (IR), which induces double-strand breaks in DNA. We used mNET-seq to profile nascent transcripts bound to different phosphorylated forms of the RNA polymerase II (RNA Pol II) C-terminal domain (CTD). We found that IR leads to global transcriptional repression of protein-coding genes, accompanied by an increase in antisense transcripts near promoters, called PROMPTs, transcribed by RNA Pol II phosphorylated on tyrosine 1 (Y1P) residue of the CTD. These Y1P-transcribed PROMPTs are enriched for PRC2 binding sites and associated with RNA Pol II proximal promoter pausing. We show the interaction between Y1P RNA Pol II and PRC2, as well as PRC2 binding to PROMPTs. Inhibition of PROMPTs or depletion of PRC2 leads to loss of transcriptional repression. Our results reveal a novel function of Y1P-dependent PROMPTs in mediating PRC2 recruitment to chromatin and RNA Pol II promoter pausing in response to DNA damage.


Assuntos
RNA Polimerase II , Tirosina , RNA Polimerase II/genética , Tirosina/genética , Transcrição Gênica , DNA/genética , Dano ao DNA
4.
RNA ; 30(3): 213-222, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38164607

RESUMO

Certain positive-sense single-stranded RNA viruses contain elements at their 3' termini that structurally mimic tRNAs. These tRNA-like structures (TLSs) are classified based on which amino acid is covalently added to the 3' end by host aminoacyl-tRNA synthetase. Recently, a cryoEM reconstruction of a representative tyrosine-accepting tRNA-like structure (TLSTyr) from brome mosaic virus (BMV) revealed a unique mode of recognition of the viral anticodon-mimicking domain by tyrosyl-tRNA synthetase. Some viruses in the hordeivirus genus of Virgaviridae are also selectively aminoacylated with tyrosine, yet these TLS RNAs have a different architecture in the 5' domain that comprises the atypical anticodon loop mimic. Herein, we present bioinformatic and biochemical data supporting a distinct secondary structure for the 5' domain of the hordeivirus TLSTyr compared to those in Bromoviridae Despite forming a different secondary structure, the 5' domain is necessary to achieve robust in vitro aminoacylation. Furthermore, a chimeric RNA containing the 5' domain from the BMV TLSTyr and the 3' domain from a hordeivirus TLSTyr are aminoacylated, illustrating modularity in these structured RNA elements. We propose that the structurally distinct 5' domain of the hordeivirus TLSTyrs performs the same role in mimicking the anticodon loop as its counterpart in the BMV TLSTyr Finally, these structurally and phylogenetically divergent types of TLSTyr provide insight into the evolutionary connections between all classes of viral tRNA-like structures.


Assuntos
Bromovirus , Vírus de RNA , Tirosina-tRNA Ligase , Sequência de Bases , Anticódon/genética , RNA Viral/química , RNA de Transferência/química , Bromovirus/genética , Bromovirus/metabolismo , Vírus de RNA/genética , Tirosina-tRNA Ligase/genética , Tirosina-tRNA Ligase/química , Tirosina-tRNA Ligase/metabolismo , Tirosina/genética , Tirosina/metabolismo , Conformação de Ácido Nucleico
5.
Nature ; 578(7796): 627-630, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32025030

RESUMO

Thyroglobulin (TG) is the protein precursor of thyroid hormones, which are essential for growth, development and the control of metabolism in vertebrates1,2. Hormone synthesis from TG occurs in the thyroid gland via the iodination and coupling of pairs of tyrosines, and is completed by TG proteolysis3. Tyrosine proximity within TG is thought to enable the coupling reaction but hormonogenic tyrosines have not been clearly identified, and the lack of a three-dimensional structure of TG has prevented mechanistic understanding4. Here we present the structure of full-length human thyroglobulin at a resolution of approximately 3.5 Å, determined by cryo-electron microscopy. We identified all of the hormonogenic tyrosine pairs in the structure, and verified them using site-directed mutagenesis and in vitro hormone-production assays using human TG expressed in HEK293T cells. Our analysis revealed that the proximity, flexibility and solvent exposure of the tyrosines are the key characteristics of hormonogenic sites. We transferred the reaction sites from TG to an engineered tyrosine donor-acceptor pair in the unrelated bacterial maltose-binding protein (MBP), which yielded hormone production with an efficiency comparable to that of TG. Our study provides a framework to further understand the production and regulation of thyroid hormones.


Assuntos
Microscopia Crioeletrônica , Tireoglobulina/química , Tireoglobulina/ultraestrutura , Proteínas de Bactérias/química , Células HEK293 , Humanos , Proteínas Ligantes de Maltose/química , Modelos Moleculares , Mutação , Reprodutibilidade dos Testes , Solventes/química , Tireoglobulina/genética , Hormônios Tireóideos/biossíntese , Hormônios Tireóideos/metabolismo , Tirosina/química , Tirosina/genética , Tirosina/metabolismo
6.
Mol Cell ; 69(1): 48-61.e6, 2018 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-29304333

RESUMO

The carboxy-terminal domain (CTD) of RNA polymerase (Pol) II is composed of a repetition of YSPTSPS heptads and functions as a loading platform for protein complexes that regulate transcription, splicing, and maturation of RNAs. Here, we studied mammalian CTD mutants to analyze the function of tyrosine1 residues in the transcription cycle. Mutation of 3/4 of the tyrosine residues (YFFF mutant) resulted in a massive read-through transcription phenotype in the antisense direction of promoters as well as in the 3' direction several hundred kilobases downstream of genes. The YFFF mutant shows reduced Pol II at promoter-proximal pause sites, a loss of interaction with the Mediator and Integrator complexes, and impaired recruitment of these complexes to chromatin. Consistent with these observations, Pol II loading at enhancers and maturation of snRNAs are altered in the YFFF context genome-wide. We conclude that tyrosine1 residues of the CTD control termination of transcription by Pol II.


Assuntos
RNA Polimerase II/genética , RNA Mensageiro/biossíntese , Terminação da Transcrição Genética/fisiologia , Transcrição Gênica/fisiologia , Tirosina/genética , Linhagem Celular Tumoral , Cromatina/metabolismo , Humanos , Mutação/genética , Regiões Promotoras Genéticas/genética , RNA Polimerase II/metabolismo , RNA Nuclear Pequeno/genética
7.
Nucleic Acids Res ; 52(3): 1173-1187, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38084915

RESUMO

Efficient DNA repair and limitation of genome rearrangements rely on crosstalk between different DNA double-strand break (DSB) repair pathways, and their synchronization with the cell cycle. The selection, timing and efficacy of DSB repair pathways are influenced by post-translational modifications of histones and DNA damage repair (DDR) proteins, such as phosphorylation. While the importance of kinases and serine/threonine phosphatases in DDR have been extensively studied, the role of tyrosine phosphatases in DNA repair remains poorly understood. In this study, we have identified EYA4 as the protein phosphatase that dephosphorylates RAD51 on residue Tyr315. Through its Tyr phosphatase activity, EYA4 regulates RAD51 localization, presynaptic filament formation, foci formation, and activity. Thus, it is essential for homologous recombination (HR) at DSBs. DNA binding stimulates EYA4 phosphatase activity. Depletion of EYA4 decreases single-stranded DNA accumulation following DNA damage and impairs HR, while overexpression of EYA4 in cells promotes dephosphorylation and stabilization of RAD51, and thereby nucleoprotein filament formation. Our data have implications for a pathological version of RAD51 in EYA4-overexpressing cancers.


Assuntos
Rad51 Recombinase , Transativadores , DNA , Reparo do DNA , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Recombinação Homóloga/genética , Fosfoproteínas Fosfatases/metabolismo , Rad51 Recombinase/genética , Rad51 Recombinase/metabolismo , Tirosina/genética , Humanos , Transativadores/metabolismo
8.
Proc Natl Acad Sci U S A ; 120(15): e2214521120, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-37023132

RESUMO

Transposable elements in eukaryotic organisms have historically been considered "selfish," at best conferring indirect benefits to their host organisms. The Starships are a recently discovered feature in fungal genomes that are, in some cases, predicted to confer beneficial traits to their hosts and also have hallmarks of being transposable elements. Here, we provide experimental evidence that Starships are indeed autonomous transposons, using the model Paecilomyces variotii, and identify the HhpA "Captain" tyrosine recombinase as essential for their mobilization into genomic sites with a specific target site consensus sequence. Furthermore, we identify multiple recent horizontal gene transfers of Starships, implying that they jump between species. Fungal genomes have mechanisms to defend against mobile elements, which are frequently detrimental to the host. We discover that Starships are also vulnerable to repeat-induced point mutation defense, thereby having implications on the evolutionary stability of such elements.


Assuntos
Elementos de DNA Transponíveis , Eucariotos , Elementos de DNA Transponíveis/genética , Eucariotos/genética , Transferência Genética Horizontal , Recombinases/genética , Tirosina/genética , Evolução Molecular
9.
EMBO J ; 40(2): e106696, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33346941

RESUMO

Eukaryotic transfer RNAs can become selectively fragmented upon various stresses, generating tRNA-derived small RNA fragments. Such fragmentation has been reported to impact a small fraction of the tRNA pool and thus presumed to not directly impact translation. We report that oxidative stress can rapidly generate tyrosine-tRNAGUA fragments in human cells-causing significant depletion of the precursor tRNA. Tyrosine-tRNAGUA depletion impaired translation of growth and metabolic genes enriched in cognate tyrosine codons. Depletion of tyrosine tRNAGUA or its translationally regulated targets USP3 and SCD repressed proliferation-revealing a dedicated tRNA-regulated growth-suppressive pathway for oxidative stress response. Tyrosine fragments are generated in a DIS3L2 exoribonuclease-dependent manner and inhibit hnRNPA1-mediated transcript destabilization. Moreover, tyrosine fragmentation is conserved in C. elegans. Thus, tRNA fragmentation can coordinately generate trans-acting small RNAs and functionally deplete a tRNA. Our findings reveal the existence of an underlying adaptive codon-based regulatory response inherent to the genetic code.


Assuntos
Códon/genética , Biossíntese de Proteínas/genética , RNA de Transferência/genética , Tirosina/genética , Animais , Caenorhabditis elegans/genética , Linhagem Celular , Proliferação de Células/genética , Células HEK293 , Humanos , Estresse Oxidativo/genética , Proteases Específicas de Ubiquitina/genética
10.
Nat Immunol ; 14(12): 1247-55, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24185614

RESUMO

The inflammasome adaptor ASC contributes to innate immunity through the activation of caspase-1. Here we found that signaling pathways dependent on the kinases Syk and Jnk were required for the activation of caspase-1 via the ASC-dependent inflammasomes NLRP3 and AIM2. Inhibition of Syk or Jnk abolished the formation of ASC specks without affecting the interaction of ASC with NLRP3. ASC was phosphorylated during inflammasome activation in a Syk- and Jnk-dependent manner, which suggested that Syk and Jnk are upstream of ASC phosphorylation. Moreover, phosphorylation of Tyr144 in mouse ASC was critical for speck formation and caspase-1 activation. Our results suggest that phosphorylation of ASC controls inflammasome activity through the formation of ASC specks.


Assuntos
Proteínas do Citoesqueleto/imunologia , Inflamassomos/imunologia , Peptídeos e Proteínas de Sinalização Intracelular/imunologia , Proteínas Quinases JNK Ativadas por Mitógeno/imunologia , Proteínas Tirosina Quinases/imunologia , Animais , Proteínas Reguladoras de Apoptose , Células da Medula Óssea/imunologia , Células da Medula Óssea/metabolismo , Proteínas Adaptadoras de Sinalização CARD , Proteínas de Transporte/genética , Proteínas de Transporte/imunologia , Proteínas de Transporte/metabolismo , Caspase 1/imunologia , Caspase 1/metabolismo , Células Cultivadas , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Proteínas de Ligação a DNA , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Feminino , Células HEK293 , Humanos , Immunoblotting , Inflamassomos/genética , Inflamassomos/metabolismo , Interleucina-18/imunologia , Interleucina-18/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/genética , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína 3 que Contém Domínio de Pirina da Família NLR , Nigericina/farmacologia , Proteínas Nucleares/genética , Proteínas Nucleares/imunologia , Proteínas Nucleares/metabolismo , Fosforilação/imunologia , Proteínas Tirosina Quinases/genética , Proteínas Tirosina Quinases/metabolismo , Interferência de RNA , Quinase Syk , Tirosina/genética , Tirosina/imunologia , Tirosina/metabolismo
11.
Blood ; 141(12): 1411-1424, 2023 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-36240433

RESUMO

STAT3 mutations, predominantly in the DNA-binding domain (DBD) and Src-homology 2 domain (SH2D), cause rare cases of immunodeficiency, malignancy, and autoimmunity. The exact mechanisms by which these mutations abrogate or enhance STAT3 function are not completely understood. Here, we examined how loss-of-function (LOF) and gain-of-function (GOF) STAT3 mutations within the DBD and SH2D affect monomer and homodimer protein stability as well as their effect on key STAT3 activation events, including recruitment to phosphotyrosine (pY) sites within peptide hormone receptors, tyrosine phosphorylation at Y705, dimerization, nuclear translocation, and DNA binding. The DBD LOF mutants showed reduced DNA binding when homodimerized, whereas the DBD GOF mutants showed increased DNA binding. DBD LOF and GOF mutants showed minimal changes in other STAT3 functions or in monomer or homodimer protein stability. However, SH2D LOF mutants demonstrated reduced conformational stability as either monomers or homodimers, leading to decreased pY-peptide recruitment, tyrosine phosphorylation, dimerization, nuclear localization, and DNA binding. In contrast, cancer-causing SH2D GOF mutants showed increased STAT3 homodimer stability, which increased their DNA binding. Of note, a small-molecule inhibitor of STAT3 that targets the tyrosine phosphopeptide-binding pocket within the STAT3 SH2D potently inhibited cell proliferation driven by STAT3 SH2D GOF mutants. These findings indicate that the stability of STAT3 protein monomer and homodimer is critical for the pathogenesis of diseases caused by SH2D LOF and GOF mutations and suggest that agents that modulate STAT3 monomer and/or homodimer protein stability may have therapeutic value in diseases caused by these mutations.


Assuntos
Fator de Transcrição STAT3 , Domínios de Homologia de src , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Mutação , Domínios de Homologia de src/genética , DNA/metabolismo , Tirosina/genética
12.
Nat Chem Biol ; 19(7): 855-864, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36805701

RESUMO

Tyrosine sulfation is a common posttranslational modification in mammals. To date, it has been thought to be limited to secreted and transmembrane proteins, but little is known about tyrosine sulfation on nuclear proteins. Here we report that SULT1B1 is a histone sulfotransferase that can sulfate the tyrosine 99 residue of nascent histone H3 in cytosol. The sulfated histone H3 can be transported into the nucleus and majorly deposited in the promoter regions of genes in chromatin. While the H3Y99 residue is buried inside octameric nucleosome, dynamically regulated subnucleosomal structures provide chromatin-H3Y99sulf the opportunity of being recognized and bound by PRMT1, which deposits H4R3me2a in chromatin. Disruption of H3Y99sulf reduces PRMT1 binding to chromatin, H4R3me2a level and gene transcription. These findings reveal the mechanisms underlying H3Y99 sulfation and its cross-talk with H4R3me2a to regulate gene transcription. This study extends the spectrum of tyrosine sulfation on nuclear proteins and the repertoire of histone modifications regulating chromatin functions.


Assuntos
Histonas , Tirosina , Animais , Histonas/metabolismo , Tirosina/genética , Cromatina , Proteínas Nucleares/metabolismo , Transcrição Gênica , Mamíferos/genética
13.
FASEB J ; 38(7): e23609, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38593345

RESUMO

PTPRD, a well-established tumor suppressor gene, encodes the protein tyrosine phosphatase-type D. This protein consists of three immunoglobulin-like (Ig) domains, four to eight fibronectin type 3 (FN) domains, a single transmembrane segment, and two cytoplasmic tandem tyrosine phosphatase domains. PTPRD is known to harbor various cancer-associated point mutations. While it is assumed that PTPRD regulates cellular functions as a tumor suppressor through the tyrosine phosphatase activity in the intracellular region, the function of its extracellular domain (ECD) in cancer is not well understood. In this study, we systematically examined the impact of 92 cancer-associated point mutations within the ECD. We found that 69.6% (64 out of 92) of these mutations suppressed total protein expression and/or plasma membrane localization. Notably, almost all mutations (20 out of 21) within the region between the last FN domain and transmembrane segment affected protein expression and/or localization, highlighting the importance of this region for protein stability. We further found that some mutations within the Ig domains adjacent to the glycosaminoglycan-binding pocket enhanced PTPRD's binding ability to heparan sulfate proteoglycans (HSPGs). This interaction is proposed to suppress phosphatase activity. Our findings therefore suggest that HSPG-mediated attenuation of phosphatase activity may be involved in tumorigenic processes through PTPRD dysregulation.


Assuntos
Proteoglicanas de Heparan Sulfato , Neoplasias , Humanos , Proteoglicanas de Heparan Sulfato/metabolismo , Mutação Puntual , Proteínas da Matriz Extracelular/genética , Imunoglobulinas , Estabilidade Proteica , Tirosina/genética , Monoéster Fosfórico Hidrolases/genética , Heparitina Sulfato , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/genética , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/metabolismo
14.
Cell Mol Life Sci ; 81(1): 216, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38740643

RESUMO

p50RhoGAP is a key protein that interacts with and downregulates the small GTPase RhoA. p50RhoGAP is a multifunctional protein containing the BNIP-2 and Cdc42GAP Homology (BCH) domain that facilitates protein-protein interactions and lipid binding and the GAP domain that regulates active RhoA population. We recently solved the structure of the BCH domain from yeast p50RhoGAP (YBCH) and showed that it maintains the adjacent GAP domain in an auto-inhibited state through the ß5 strand. Our previous WT YBCH structure shows that a unique kink at position 116 thought to be made by a proline residue between alpha helices α6 and α7 is essential for the formation of intertwined dimer from asymmetric monomers. Here we sought to establish the role and impact of this Pro116. However, the kink persists in the structure of P116A mutant YBCH domain, suggesting that the scaffold is not dictated by the proline residue at this position. We further identified Tyr124 (or Tyr188 in HBCH) as a conserved residue in the crucial ß5 strand. Extending to the human ortholog, when substituted to acidic residues, Tyr188D or Tyr188E, we observed an increase in RhoA binding and self-dimerization, indicative of a loss of inhibition of the GAP domain by the BCH domain. These results point to distinct roles and impact of the non-conserved and conserved amino acid positions in regulating the structural and functional complexity of the BCH domain.


Assuntos
Prolina , Prolina/metabolismo , Prolina/química , Prolina/genética , Tirosina/metabolismo , Tirosina/química , Tirosina/genética , Domínios Proteicos , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Sequência de Aminoácidos , Proteína rhoA de Ligação ao GTP/metabolismo , Proteína rhoA de Ligação ao GTP/genética , Proteína rhoA de Ligação ao GTP/química , Modelos Moleculares , Sequência Conservada , Humanos , Ligação Proteica
15.
Nucleic Acids Res ; 51(16): 8402-8412, 2023 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-37526274

RESUMO

Genomic islands (GIs) play a crucial role in the spread of antibiotic resistance, virulence factors and antiviral defense systems in a broad range of bacterial species. However, the characterization and classification of GIs are challenging due to their relatively small size and considerable genetic diversity. Predicting their intercellular mobility is of utmost importance in the context of the emerging crisis of multidrug resistance. Here, we propose a large-scale classification method to categorize GIs according to their mobility profile and, subsequently, analyze their gene cargo. We based our classification decision scheme on a collection of mobility protein motif definitions available in publicly accessible databases. Our results show that the size distribution of GI classes correlates with their respective structure and complexity. Self-transmissible GIs are usually the largest, except in Bacillota and Actinomycetota, accumulate antibiotic and phage resistance genes, and favour the use of a tyrosine recombinase to insert into a host's replicon. Non-mobilizable GIs tend to use a DDE transposase instead. Finally, although tRNA genes are more frequently targeted as insertion sites by GIs encoding a tyrosine recombinase, most GIs insert in a protein-encoding gene. This study is a stepping stone toward a better characterization of mobile GIs in bacterial genomes and their mechanism of mobility.


Assuntos
Bactérias , Farmacorresistência Bacteriana , Ilhas Genômicas , Bactérias/efeitos dos fármacos , Bactérias/genética , Genoma Bacteriano/genética , Ilhas Genômicas/genética , Recombinases/genética , Tirosina/genética
16.
PLoS Genet ; 18(9): e1010373, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36095024

RESUMO

Prostate cancer is the most inheritable cancer with approximately 42% of disease risk attributed to inherited factors by studies of twins, indicating the importance of additional genetic screening to identify predisposition variants. However, only DNA damage repair (DDR) genes have been investigated thoroughly in prostate cancer. To determine the comprehensive germline mutation landscape in Chinese prostate cancer patients, we performed whole exome sequencing in 100 Han Chinese patients with prostate cancer in Hong Kong and identified deleterious germline mutations. A total of 36 deleterious germline variants in 25 genes were identified in 29% patients. Variants were found in eight pathways, including DNA methylation, DDR, and tyrosine-protein kinase. These findings were validated in an independent Chinese cohort of 167 patients with prostate cancer in Shanghai. Seven common deleterious-variant-containing genes were found in discovery cohort (7/25, 28%) and validation cohort (7/28, 25%) with three genes not described before (LDLR, MYH7 and SUGCT) and four genes previously reported (FANCI, ITGA6, PABPC1 and RAD54B). When comparing with that of a cohort of East Asian healthy individuals, 12 non-DDR novel potential predisposition genes (ADGRG1, CHD4, DNMT3A, ERBB3, GRHL1, HMBS, LDLR, MYH7, MYO6, NT5C2, NUP98 and SUGCT) were identified using the discovery and validation cohorts, which have not been previously reported in prostate cancer patients in all ethnic groups. Taken together, this study reveals a comprehensive germline mutation landscape in Chinese prostate cancer patients and discovers 12 novel non-DDR predisposition genes to lay the groundwork for the optimization of genetic screening.


Assuntos
Mutação em Linhagem Germinativa , Neoplasias da Próstata , China , Predisposição Genética para Doença , Humanos , Masculino , Neoplasias da Próstata/genética , Proteínas Quinases/genética , Tirosina/genética , Sequenciamento do Exoma
17.
Proc Natl Acad Sci U S A ; 119(40): e2207374119, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-36161920

RESUMO

Most colonial marine invertebrates are capable of allorecognition, the ability to distinguish between themselves and conspecifics. One long-standing question is whether invertebrate allorecognition genes are homologous to vertebrate histocompatibility genes. In the cnidarian Hydractinia symbiolongicarpus, allorecognition is controlled by at least two genes, Allorecognition 1 (Alr1) and Allorecognition 2 (Alr2), which encode highly polymorphic cell-surface proteins that serve as markers of self. Here, we show that Alr1 and Alr2 are part of a family of 41 Alr genes, all of which reside in a single genomic interval called the Allorecognition Complex (ARC). Using sensitive homology searches and highly accurate structural predictions, we demonstrate that the Alr proteins are members of the immunoglobulin superfamily (IgSF) with V-set and I-set Ig domains unlike any previously identified in animals. Specifically, their primary amino acid sequences lack many of the motifs considered diagnostic for V-set and I-set domains, yet they adopt secondary and tertiary structures nearly identical to canonical Ig domains. Thus, the V-set domain, which played a central role in the evolution of vertebrate adaptive immunity, was present in the last common ancestor of cnidarians and bilaterians. Unexpectedly, several Alr proteins also have immunoreceptor tyrosine-based activation motifs and immunoreceptor tyrosine-based inhibitory motifs in their cytoplasmic tails, suggesting they could participate in pathways homologous to those that regulate immunity in humans and flies. This work expands our definition of the IgSF with the addition of a family of unusual members, several of which play a role in invertebrate histocompatibility.


Assuntos
Hidrozoários , Imunoglobulinas , Complexo Principal de Histocompatibilidade , Animais , Hidrozoários/genética , Hidrozoários/imunologia , Imunoglobulinas/química , Imunoglobulinas/genética , Complexo Principal de Histocompatibilidade/genética , Proteínas de Membrana/química , Proteínas de Membrana/genética , Domínios Proteicos , Tirosina/química , Tirosina/genética
18.
PLoS Genet ; 18(9): e1010362, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36054194

RESUMO

The role of EGFR in lung cancer is well described with numerous activating mutations that result in phosphorylation and tyrosine kinase inhibitors that target EGFR. While the role of the EGFR kinase in non-small cell lung cancer (NSCLC) is appreciated, control of EGFR signaling pathways through dephosphorylation by phosphatases is not as clear. Through whole genome sequencing we have uncovered conserved V483M Ptprh mutations in PyMT induced tumors. Profiling the downstream events of Ptprh mutant tumors revealed AKT activation, suggesting a key target of PTPRH was EGFR tyrosine 1197. Given the role of EGFR in lung cancer, we explored TCGA data which revealed that a subset of PTPRH mutant tumors shared gene expression profiles with EGFR mutant tumors, but that EGFR mutations and PTPRH mutations were mutually exclusive. Generation of a PTPRH knockout NSCLC cell line resulted in Y1197 phosphorylation of EGFR, and a rescue with expression of wild type PTPRH returned EGFR phosphorylation to parental line values while rescue with catalytically dead PTPRH did not. A dose response curve illustrated that two human NSCLC lines with naturally occurring PTPRH mutations responded to EGFR tyrosine kinase inhibition. Osimertinib treatment of these tumors resulted in a reduction of tumor volume relative to vehicle controls. PTPRH mutation resulted in nuclear pEGFR as seen in immunohistochemistry, suggesting that there may also be a role for EGFR as a transcriptional co-factor. Together these data suggest mutations in PTPRH in NSCLC is inhibitory to PTPRH function, resulting in aberrant EGFR activity and ultimately may result in clinically actionable alterations using existing therapies.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Receptores ErbB/genética , Receptores ErbB/metabolismo , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Mutação , Monoéster Fosfórico Hidrolases/genética , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Tirosina Quinases/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Tirosina Fosfatases Classe 3 Semelhantes a Receptores/genética , Tirosina/genética
19.
Exp Dermatol ; 33(3): e15059, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38532578

RESUMO

Psoriasis is a common chronic inflammatory skin disease with a complex pathogenesis involving immune system dysregulation and inflammation. Previous studies have indicated that metabolic abnormalities are closely related to the development and occurrence of psoriasis. However, the specific involvement of amino acid metabolism in the pathogenesis of psoriasis remains unclear. In this study, we conducted a comprehensive analysis of amino acid metabolism pathway changes in psoriasis patients using transcriptome data, genome-wide association studies (GWASs) data, and single-cell data. Our findings revealed 11 significant alterations in amino acid metabolism pathways within psoriatic lesions, with notable restorative changes observed after biological therapy. Branched-chain amino acids, tyrosine and arginine metabolism have a causal relationship with the occurrence of psoriasis and may play a crucial role by promoting the proliferation and differentiation of the keratinocytes or immune-related pathways. Activation of phenylalanine, tyrosine and tryptophan biosynthesis suggests a favourable prognosis of psoriasis after treatment. Additionally, we identified the abnormal metabolic pathways in specific cell types and key gene sets that contribute to amino acid metabolic disorders in psoriasis. Overall, our study enhances understanding of the role of metabolism in the pathogenesis of psoriasis and provides potential targets for developing new therapeutic strategies for the disease.


Assuntos
Aminoácidos , Psoríase , Humanos , Estudo de Associação Genômica Ampla , Psoríase/tratamento farmacológico , Queratinócitos/metabolismo , Redes e Vias Metabólicas , Tirosina/genética
20.
Biochemistry ; 62(12): 1964-1975, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37285547

RESUMO

Cysteine dioxygenase (CDO) is a non-heme iron-containing enzyme that catalyzes the oxidation of cysteine (Cys) to cysteine sulfinic acid (CSA). Crystal structures of eukaryotic CDOs revealed the presence of an unusual crosslink between the sulfur of a cysteine residue (C93 in Mus musculus CDO, MmCDO) and a carbon atom adjacent to the phenyl group of a tyrosine residue (Y157). Formation of this crosslink occurs over time as a byproduct of catalysis and increases the catalytic efficiency of CDO by at least 10-fold. Interestingly, in bacterial CDOs, the residue corresponding to C93 is replaced by a highly conserved glycine (G82 in Bacillus subtilis CDO, BsCDO), which precludes the formation of a C-Y crosslink in these enzymes; yet bacterial CDOs achieve turnover rates paralleling those of fully crosslinked eukaryotic CDOs. In the present study, we prepared the G82C variant of BsCDO to determine if a single DNA point mutation could lead to C-Y crosslink formation in this enzyme. We used gel electrophoresis, peptide mass spectrometry, electron paramagnetic resonance spectroscopy, and kinetic assays to characterize this variant alongside the natively crosslinked wild-type (WT) MmCDO and the natively non-crosslinked WT BsCDO. Collectively, our results provide compelling evidence that the G82C BsCDO variant is indeed capable of C-Y crosslink formation. Our kinetic studies indicate that G82C BsCDO has a reduced catalytic efficiency compared to WT BsCDO and that activity increases as the ratio of crosslinked to non-crosslinked enzyme increases. Finally, by carrying out a bioinformatic analysis of the CDO family, we were able to identify a large number of putatively crosslinked bacterial CDOs, the majority of which are from Gram-negative pathogenic bacteria.


Assuntos
Bacillus subtilis , Cisteína Dioxigenase , Cisteína , Animais , Camundongos , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Cisteína/genética , Cisteína Dioxigenase/química , Cisteína Dioxigenase/genética , Cinética , Mutação Puntual , Tirosina/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa