Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
EMBO J ; 43(17): 3650-3676, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39020150

RESUMO

Plant intracellular nucleotide-binding and leucine-rich repeat immune receptors (NLRs) play a key role in activating a strong pathogen defense response. Plant NLR proteins are tightly regulated and accumulate at very low levels in the absence of pathogen effectors. However, little is known about how this low level of NLR proteins is able to induce robust immune responses upon recognition of pathogen effectors. Here, we report that, in the absence of effector, the inactive form of the tomato NLR Sw-5b is targeted for ubiquitination by the E3 ligase SBP1. Interaction of SBP1 with Sw-5b via only its N-terminal domain leads to slow turnover. In contrast, in its auto-active state, Sw-5b is rapidly turned over as SBP1 is upregulated and interacts with both its N-terminal and NB-LRR domains. During infection with the tomato spotted wilt virus, the viral effector NSm interacts with Sw-5b and disrupts the interaction of Sw-5b with SBP1, thereby stabilizing the active Sw-5b and allowing it to induce a robust immune response.


Assuntos
Proteínas NLR , Imunidade Vegetal , Proteínas de Plantas , Solanum lycopersicum , Ubiquitinação , Solanum lycopersicum/imunologia , Solanum lycopersicum/virologia , Solanum lycopersicum/metabolismo , Solanum lycopersicum/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/imunologia , Proteínas de Plantas/genética , Proteínas NLR/metabolismo , Proteínas NLR/imunologia , Proteínas NLR/genética , Doenças das Plantas/virologia , Doenças das Plantas/imunologia , Tospovirus/imunologia , Proteínas Virais/metabolismo , Proteínas Virais/imunologia , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/imunologia , Interações Hospedeiro-Patógeno/imunologia
2.
J Gen Virol ; 105(5)2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38717918

RESUMO

The tomato spotted wilt virus (TSWV) is a member of the Tospoviridae family and has an negative/ambisense single-stranded RNA genome. Frankliniella occidentalis and F. intonsa are known to be dominant pests in Capsicum annuum (hot pepper) and can cause damage to the plant either directly by feeding, or indirectly by transmitting TSWV in a persistent and propagative manner, resulting in serious economic damage. This study compared the immune responses of two different thrips species against TSWV infection by transcriptome analysis, which then allowed the assessment of antiviral responses using RNA interference (RNAi). Both adult thrips shared about 90 % of the transcripts in non-viruliferous conditions. Most signal components of the immune pathways were shared by these two thrips species, and their expression levels fluctuated differentially in response to TSWV infection at early immature stages. The functional assays using RNAi treatments indicated that the Toll and JAK/STAT pathways were associated with the antiviral responses, but the IMD pathway was not. The upregulation of dorsal switch protein one supported its physiological role in recognizing TSWV infection and triggering the eicosanoid biosynthetic pathway, which mediates melanization and apoptosis in thrips. In addition, the signal components of the RNAi pathways fluctuated highly after TSWV infection. Individual RNAi treatments specific to the antiviral signalling and response components led to significant increases in the TSWV amount in the thrips, causing virus-induced mortality. These findings suggest that immune signalling pathways leading to antiviral responses are operating in the thrips to regulate TSWV litres to prevent a fatal viral overload. This study also indicates the differential antiviral responses between the TSWV-transmitting F. occidentalis and F. intonsa.


Assuntos
Doenças das Plantas , Tisanópteros , Tospovirus , Tospovirus/imunologia , Tospovirus/fisiologia , Tospovirus/genética , Animais , Tisanópteros/virologia , Tisanópteros/imunologia , Doenças das Plantas/virologia , Doenças das Plantas/imunologia , Capsicum/virologia , Capsicum/imunologia , Replicação Viral , Interferência de RNA , Insetos Vetores/virologia , Insetos Vetores/imunologia , Perfilação da Expressão Gênica , Transdução de Sinais
3.
PLoS Pathog ; 17(7): e1009757, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34320034

RESUMO

Antiviral RNA silencing/interference (RNAi) of negative-strand (-) RNA plant viruses (NSVs) has been studied less than for single-stranded, positive-sense (+)RNA plant viruses. From the latter, genomic and subgenomic mRNA molecules are targeted by RNAi. However, genomic RNA strands from plant NSVs are generally wrapped tightly within viral nucleocapsid (N) protein to form ribonucleoproteins (RNPs), the core unit for viral replication, transcription and movement. In this study, the targeting of the NSV tospoviral genomic RNA and mRNA molecules by antiviral RNA-induced silencing complexes (RISC) was investigated, in vitro and in planta. RISC fractions isolated from tospovirus-infected N. benthamiana plants specifically cleaved naked, purified tospoviral genomic RNAs in vitro, but not genomic RNAs complexed with viral N protein. In planta RISC complexes, activated by a tobacco rattle virus (TRV) carrying tospovirus NSs or Gn gene fragments, mainly targeted the corresponding viral mRNAs and hardly genomic (viral and viral-complementary strands) RNA assembled into RNPs. In contrast, for the (+)ssRNA cucumber mosaic virus (CMV), RISC complexes, activated by TRV carrying CMV 2a or 2b gene fragments, targeted CMV genomic RNA. Altogether, the results indicated that antiviral RNAi primarily targets tospoviral mRNAs whilst their genomic RNA is well protected in RNPs against RISC-mediated cleavage. Considering the important role of RNPs in the replication cycle of all NSVs, the findings made in this study are likely applicable to all viruses belonging to this group.


Assuntos
Imunidade Vegetal/imunologia , RNA Viral/imunologia , Complexo de Inativação Induzido por RNA/imunologia , Tospovirus/imunologia , RNA Mensageiro/imunologia , Nicotiana/virologia
4.
Int J Mol Sci ; 22(16)2021 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-34445289

RESUMO

The NSs protein and the nucleocapsid protein (NP) of orthotospoviruses are the major targets for serological detection and diagnosis. A common epitope of KFTMHNQIF in the NSs proteins of Asia orthotospoviruses has been applied as an epitope tag (nss-tag) for monitoring recombinant proteins. In this study, a monoclonal antibody TNP MAb against the tomato spotted wilt virus (TSWV) NP that reacts with TSWV-serogroup members of Euro-America orthotospoviruses was produced. By truncation and deletion analyses of TSWV NP, the common epitope of KGKEYA was identified and designated as the np sequence. The np sequence was successfully utilized as an epitope tag (np-tag) to monitor various proteins, including the green fluorescence protein, the coat protein of the zucchini yellow mosaic virus, and the dust mite chimeric allergen Dp25, in a bacterial expression system. The np-tag was also applied to investigate the protein-protein interaction in immunoprecipitation. In addition, when the np-tag and the nss-tag were simultaneously attached at different termini of the expressed recombinant proteins, they reacted with the corresponding MAbs with high sensitivity. Here, we demonstrated that the np sequence and TNP MAb can be effectively applied for tagging and detecting proteins and can be coupled with the nss-tag to form a novel epitope-tagging system for investigating protein-protein interactions.


Assuntos
Mapeamento de Epitopos , Imuno-Histoquímica/métodos , Proteínas do Nucleocapsídeo/imunologia , Vírus de Plantas/imunologia , América , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/metabolismo , Epitopos/análise , Epitopos/química , Europa (Continente) , Imunoprecipitação , Vírus do Mosaico/química , Vírus do Mosaico/classificação , Vírus do Mosaico/imunologia , Proteínas do Nucleocapsídeo/química , Doenças das Plantas/imunologia , Doenças das Plantas/virologia , Vírus de Plantas/química , Vírus de Plantas/classificação , Potyvirus/química , Potyvirus/imunologia , Coloração e Rotulagem/métodos , Tospovirus/química , Tospovirus/classificação , Tospovirus/imunologia
5.
Virol J ; 15(1): 62, 2018 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-29615087

RESUMO

BACKGROUND: Iris yellow spot virus (IYSV) is an Orthotospovirus that infects most Allium species. Very few approaches for specific detection of IYSV from infected plants are available to date. We report the development of a high-sensitive Luminex xMAP-based microsphere immunoassay (MIA) for specific detection of IYSV. RESULTS: The nucleocapsid (N) gene of IYSV was cloned and expressed in Escherichia coli to produce the His-tagged recombinant N protein. A panel of monoclonal antibodies (MAbs) against IYSV was generated by immunizing the mice with recombinant N protein. Five specific MAbs (16D9, 11C6, 7F4, 12C10, and 14H12) were identified and used for developing the Luminex xMAP-based MIA systems along with a polyclonal antibody against IYSV. Comparative analyses of their sensitivity and specificity in detecting IYSV from infected tobacco leaves identified 7F4 as the best-performed MAb in MIA. We then optimized the working conditions of Luminex xMAP-based MIA in specific detection of IYSV from infected tobacco leaves by using appropriate blocking buffer and proper concentration of biotin-labeled antibodies as well as the suitable ratio between the antibodies and the streptavidin R-phycoerythrin (SA-RPE). Under the optimized conditions the Luminex xMAP-based MIA was able to specifically detect IYSV with much higher sensitivity than conventional enzyme-linked immunosorbent assay (ELISA). Importantly, the Luminex xMAP-based MIA is time-saving and the whole procedure could be completed within 2.5 h. CONCLUSIONS: We generated five specific MAbs against IYSV and developed the Luminex xMAP-based MIA method for specific detection of IYSV in plants. This assay provides a sensitive, high-specific, easy to perform and likely cost-effective approach for IYSV detection from infected plants, implicating potential broad usefulness of MIA in plant virus diagnosis.


Assuntos
Infecções por Bunyaviridae/diagnóstico , Infecções por Bunyaviridae/virologia , Imunoensaio , Medições Luminescentes , Microesferas , Doenças das Plantas/virologia , Tospovirus/imunologia , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Antivirais/imunologia , Feminino , Imunoensaio/métodos , Medições Luminescentes/métodos , Camundongos , Proteínas Recombinantes , Sensibilidade e Especificidade , Tospovirus/genética , Proteínas Virais/genética , Proteínas Virais/imunologia
6.
Virol J ; 15(1): 15, 2018 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-29347937

RESUMO

BACKGROUND: Tomato zonate spot virus (TZSV), a new species of genus Tospovirus, caused significant losses in yield and problems in quality of many important vegetables and ornamentals in Southwest China and posed a serious threat to important economic crops for the local farmers. A convenient and reliable method was urgently needed for rapid detection and surveillance of TZSV. METHODS: The nucleocapsid protein (N) of TZSV was expressed in Escherichia coli and purified, and was used as the antigen to immunize BALB/c mice. Three monoclonal antibodies (mAbs) 3A2, 5D2 and 5F7 against TZSV were obtained through the hybridoma technique. The mAb 3A2 was conjugated with colloid gold as detecting reagent; mAb 5D2 was coated on a porous nitrocellulose membrane as the detection line and protein A was coated as the control line respectively. The colloid gold immunochromatographic (GICA) strip was assembled. RESULTS: The analysis of Dot-ELISA and Western blot showed that the obtained three independent lines of mAbs 3A2, 5D2 and 5F7 specifically recognized TZSV N. Based on the assembly of GICA strip, the detection of TZSV was achieved by loading the infected sap onto the test strip for visual inspection. The analysis could be completed within 5-10 min. No cross-reaction occurred between TZSV and other tested viruses. The visual detection limit of the test strip for TZSV was 800 fold dilutions of TZSV-infected leaf samples. CONCLUSION: The mAbs were specific and the colloidal GICA strip developed in this study was convenient, fast and reliable for the detection of TZSV. The method could be applied for the rapid diagnosis and surveillance of TZSV in the field.


Assuntos
Anticorpos Monoclonais , Cromatografia de Afinidade , Coloide de Ouro , Doenças das Plantas/virologia , Fitas Reagentes , Solanum lycopersicum/virologia , Tospovirus/classificação , Animais , Anticorpos Monoclonais/biossíntese , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/isolamento & purificação , Cromatografia de Afinidade/métodos , Ensaio de Imunoadsorção Enzimática , Camundongos , Proteínas Recombinantes , Sensibilidade e Especificidade , Tospovirus/genética , Tospovirus/imunologia , Proteínas Virais/genética , Proteínas Virais/imunologia , Proteínas Virais/isolamento & purificação
7.
Lett Appl Microbiol ; 64(4): 297-303, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28129432

RESUMO

Tomato spotted wilt virus (TSWV) causes significant losses in the production of the ornamental plant Dahlia variabilis in Japan. The purpose of this study was to examine the distribution of TSWV in dahlia plants and identify plant parts that can be used in the selection of TSWV-free plants. The distribution of TSWV was investigated using reverse transcriptional polymerase chain reaction (RT-PCR) and tissue blot immunoassay. The detection rate of TSWV in latent infected compound leaves was the highest in the petiole, and it decreased from the veins and rachis to the lamina. The tissue blot immunoassays of the leaflets showed an uneven distribution of TSWV, especially along the edge of the leaf blade. In stems, the detection rate of TSWV was high partway up the stem compared to that in the upper and the lower parts of the stem during the vegetative growth stage. A highly uneven distribution was observed in the bulb. Our results indicated that middle parts of the stem as well as the petioles, rachis, and veins of compound leaves are suitable for detection of TSWV in dahlias. This study is the first to report uneven distribution of TSWV in dahlia plants. SIGNIFICANCE AND IMPACT OF THE STUDY: In this study, the distribution of Tomato spotted wilt virus (TSWV) in various parts of dahlia plants was investigated for the first time. The distribution of TSWV was uneven in compound leaves, leaflets, stems, and bulbs. The middle parts of the stem or the petiole and leaf veins should be sampled to detect TSWV when selecting healthy plants.


Assuntos
Dahlia/virologia , Doenças das Plantas/virologia , Tospovirus/isolamento & purificação , Japão , Folhas de Planta/virologia , Raízes de Plantas/virologia , Caules de Planta/virologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Tospovirus/genética , Tospovirus/imunologia
8.
J Gen Virol ; 97(8): 1990-1997, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27146092

RESUMO

The movement protein NSm of Tomato spotted wilt tospovirus (TSWV) plays pivotal roles in viral intercellular trafficking. Recently, the TSWV NSm was also identified as an avirulence (Avr) determinant during the Sw-5b-mediated hypersensitive response (HR). However, whether the cell-to-cell movement of NSm is coupled to its function in HR induction remains obscure. Here, we showed that the NSm mutants defective in targeting plasmodesmata and cell-to-cell movement were still capable of inducing Sw-5b-mediated HR. In addition, introduction of a single amino-acid substitution, C118Y or T120N, identified previously from TSWV resistance-breaking isolates, into the movement-defective NSm mutants resulted in the failure of HR induction. Collectively, our results showed that the intercellular trafficking of NSm is uncoupled from its function in HR induction. These findings shed light on the evolutionary mechanism of R-Avr recognition and may be used to explain why this uncoupled phenomenon can be observed in many different viruses.


Assuntos
Proteínas do Movimento Viral em Plantas/metabolismo , Plasmodesmos/virologia , Solanum lycopersicum/virologia , Tospovirus/fisiologia , Deleção de Genes , Interações Hospedeiro-Patógeno , Solanum lycopersicum/imunologia , Mutação de Sentido Incorreto , Proteínas do Movimento Viral em Plantas/efeitos dos fármacos , Transporte Proteico , Tospovirus/imunologia
9.
Virol J ; 13: 72, 2016 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-27121504

RESUMO

BACKGROUND: The thrips-borne tospoviruses Calla lily chlorotic spot virus (CCSV), Tomato zonate spot virus (TZSV) and a new species provisionally named Tomato necrotic spot associated virus (TNSaV) infect similar crops in southwestern China. The symptoms exhibiting on virus-infected crops are similar, which is difficult for distinguishing virus species by symptomatology. The sequences of nucleocapsid proteins (NPs) of CCSV, TNSaV and TZSV share high degrees of amino acid identity with each other, and their serological relationship was currently demonstrated from the responses of the previously reported monoclonal antibodies (MAbs) against the NP of CCSV (MAb-CCSV-NP) and the nonstructural NSs protein of Watermelon silver mottle virus (WSMoV) (MAb-WNSs). Therefore, the production of virus-specific antibodies for identification of CCSV, TNSaV and TZSV is demanded to improve field surveys. METHODS: The NP of TZSV-13YV639 isolated from Crinum asiaticum in Yunnan Province, China was bacterially expressed and purified for producing MAbs. Indirect enzyme-linked immunosorbent assay (ELISA) and immunoblotting were conducted to test the serological response of MAbs to 18 tospovirus species. Additionally, the virus-specific primers were designed to verify the identity of CCSV, TNSaV and TZSV in one-step reverse transcription-polymerase chain reaction (RT-PCR). RESULTS: Two MAbs, denoted MAb-TZSV-NP(S15) and MAb-TZSV-NP(S18), were screened for test. MAb-TZSV-NP(S15) reacted with CCSV and TZSV while MAb-TZSV-NP(S18) reacted specifically to TZSV in both indirect ELISA and immunoblotting. Both MAbs can be used to detect TZSV in field-collected plant samples. The epitope of MAb-TZSV-NP(S18) was further identified consisting of amino acids 78-86 (HKIVASGAD) of the TZSV-13YV639 NP that is a highly conserved region among known TZSV isolates but is distinct from TNSaV and TZSV. CONCLUSIONS: In this study, two MAbs targeting to different portions of the TZSV NP were obtained. Unlike MAb-CCSV-NP reacted with TNSaV as well as CCSV and TZSV, both TZSV MAbs can be used to differentiate CCSV, TNSaV and TZSV. The identity of CCSV, TNSaV and TZSV was proven by individual virus-specific primer pairs to indicate the correctness of serological responses. We also proposed an serological detection platform using MAb-CCSV-NP, MAb-TZSV-NP(S15) and MAb-TZSV-NP(S18) to allow researchers and quarantine staff to efficiently diagnose the infections of CCSV, TNSaV and TZSV in China and other countries.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Antivirais/imunologia , Antígenos Virais/análise , Doenças das Plantas/virologia , Tospovirus/classificação , Tospovirus/isolamento & purificação , Antígenos Virais/imunologia , China , Ensaio de Imunoadsorção Enzimática , Immunoblotting , Tospovirus/imunologia
10.
Arch Virol ; 160(2): 529-36, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25427981

RESUMO

Chrysanthemum stem necrosis virus (CSNV) is a member of a tentative tospovirus species. In this study, the complete genomic sequence of the Japanese CSNV isolate TcCh07A was determined. The L RNA is 8960 nt long and encodes the 331.0-kDa RNA-dependent RNA polymerase. The M RNA is 4828 nt long and encodes the 34.1-kDa movement protein (NSm) and the 127.7-kDa glycoprotein precursor (Gn/Gc). The S RNA is 2949 nt long and encodes the 52.4-kDa silencing suppressor protein (NSs) and the 29.3-kDa nucleocapsid (N) protein. The N protein of CSNV-TcCh07A was purified from virus-infected plant tissues and used for production of a rabbit polyclonal antiserum (RAs) and a monoclonal antibody (MAb). Results of serological tests by indirect ELISA and western blotting using the prepared RAs and MAb and a previously produced RAs against the N protein of tomato spotted wilt virus (TSWV) indicated that CSNV-TcCh07A, TSWV, tomato chlorotic spot virus, groundnut ringspot virus, alstroemeria necrotic streak virus and impatiens necrotic spot virus are serologically related.


Assuntos
Chrysanthemum/virologia , Proteínas do Nucleocapsídeo/imunologia , Doenças das Plantas/virologia , RNA Viral/genética , Tospovirus/classificação , Sequência de Aminoácidos , Animais , Anticorpos Monoclonais/imunologia , Sequência de Bases , Camundongos , Camundongos Endogâmicos BALB C , Dados de Sequência Molecular , Coelhos , Análise de Sequência de RNA , Homologia de Sequência de Aminoácidos , Testes Sorológicos , Nicotiana/virologia , Tospovirus/genética , Tospovirus/imunologia
11.
Arch Virol ; 160(5): 1297-301, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25698103

RESUMO

Few studies have been done on engineered antibodies for diagnosis of tospovirus infections. The present study was undertaken to develop a single-chain variable fragment (scFv) for specific diagnosis of infection by groundnut bud necrosis virus (GBNV), the most prevalent serogroup IV tospovirus in India. Heavy chain (372 nucleotide [nt]) and light chain (363 nt) variable region clones obtained from a hybridoma were used to make an scFv construct that expressed a ~29-kDa protein in E. coli. The scFv specifically detected GBNV in field samples of cowpea, groundnut, mung bean, and tomato, and it did not recognize watermelon bud necrosis virus, a close relative of GBNV belonging to tospovirus serogroup IV. This study for the first time demonstrated the application of a functional scFv against a serogroup-IV tospovirus.


Assuntos
Anticorpos Antivirais , Doenças das Plantas/virologia , Anticorpos de Cadeia Única , Tospovirus/isolamento & purificação , Anticorpos Antivirais/genética , Escherichia coli/genética , Fabaceae/virologia , Expressão Gênica , Testes Imunológicos/métodos , Índia , Solanum lycopersicum/virologia , Proteínas Recombinantes/genética , Sensibilidade e Especificidade , Anticorpos de Cadeia Única/genética , Tospovirus/imunologia
12.
Virus Genes ; 50(1): 71-8, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25331341

RESUMO

Resurgence of Tomato spotted wilt virus (TSWV) worldwide as well as in Hungary causing heavy economic losses directed the attention to the factors contributing to the outbreak of this serious epidemics. The introgression of Tsw resistance gene into various pepper cultivars seemed to solve TSWV control, but widely used resistant pepper cultivars bearing the same, unique resistance locus evoked the rapid emergence of resistance-breaking (RB) TSWV strains. In Hungary, the sporadic appearance of RB strains in pepper-producing region was first observed in 2010-2011, but in 2012 it was detected frequently. Previously, the non-structural protein (NSs) encoded by small RNA (S RNA) of TSWV was verified as the avirulence factor for Tsw resistance, therefore we analyzed the S RNA of the Hungarian RB and wild type (WT) isolates and compared to previously analyzed TSWV strains with RB properties from different geographical origins. Phylogenetic analysis demonstrated that the different RB strains had the closest relationship with the local WT isolates and there is no conserved mutation present in all the NSs genes of RB isolates from different geographical origins. According to these results, we concluded that the RB isolates evolved separately in geographic point of view, and also according to the RB mechanism.


Assuntos
Capsicum/imunologia , Capsicum/virologia , Tospovirus/genética , Tospovirus/isolamento & purificação , Proteínas não Estruturais Virais/genética , Análise por Conglomerados , Hungria , Dados de Sequência Molecular , Filogeografia , Doenças das Plantas/virologia , RNA Viral/genética , Análise de Sequência de DNA , Tospovirus/classificação , Tospovirus/imunologia
13.
Plant J ; 75(6): 941-53, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23738576

RESUMO

Tomato line 30.4 was obtained engineering the nucleocapsid (N) gene of tomato spotted wilt virus into plant genome, and immunity to tomato spotted wilt virus infection of its self-pollinated homozygous progeny was observed. Despite the presence of a high amount of transgenic transcripts, transgenic proteins have not been detected, suggesting a mechanism of resistance mediated by RNA. In the present study, we identify post-transcriptional gene silencing as the main mechanism of resistance, which is able to spread systemically through grafting, and show that the line 30.4 resistant plants produce both 24 and 21-22 nt N-gene specific siRNA classes. The transgenic locus in chromosome 4 shows complex multiple insertions of four T-DNA copies in various orientations, all with 3' end deletions in the terminator and part of the N gene. However, for three of them, polyadenylated transcripts are produced, due to flanking tomato genome sequences acting as alternative terminators. Interestingly, starting at the fifth generation after the transformation event, some individual plants show a tomato spotted wilt virus-susceptible phenotype. The change is associated with the disappearance of transgene-specific transcripts and siRNAs, and with hyper-methylation of the transgene, which proceeds gradually through the generations. Once it reaches a critical threshold, the shift from post-transcriptional gene silencing to transcriptional silencing of the transgene eliminates the previously well established virus resistance.


Assuntos
Imunidade Vegetal/genética , Interferência de RNA , Processamento Pós-Transcricional do RNA/imunologia , Solanum lycopersicum/virologia , Tospovirus/imunologia , Metilação de DNA/genética , Metilação de DNA/imunologia , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Solanum lycopersicum/genética , Solanum lycopersicum/imunologia , Nucleocapsídeo/genética , Nucleocapsídeo/imunologia , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Doenças das Plantas/virologia , Regiões Promotoras Genéticas , Processamento Pós-Transcricional do RNA/genética , RNA Interferente Pequeno/biossíntese , RNA Interferente Pequeno/classificação , RNA Interferente Pequeno/genética , RNA Viral/genética , RNA Viral/imunologia , Tospovirus/genética , Transgenes
14.
Mol Plant Microbe Interact ; 27(3): 296-304, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24405031

RESUMO

Vector-borne viruses are a threat to human, animal, and plant health worldwide, requiring the development of novel strategies for their control. Tomato spotted wilt virus (TSWV) is one of the 10 most economically significant plant viruses and, together with other tospoviruses, is a threat to global food security. TSWV is transmitted by thrips, including the western flower thrips, Frankliniella occidentalis. Previously, we demonstrated that the TSWV glycoprotein GN binds to thrips vector midguts. We report here the development of transgenic plants that interfere with TSWV acquisition and transmission by the insect vector. Tomato plants expressing GN-S protein supported virus accumulation and symptom expression comparable with nontransgenic plants. However, virus titers in larval insects exposed to the infected transgenic plants were three-log lower than insects exposed to infected nontransgenic control plants. The negative effect of the GN-S transgenics on insect virus titers persisted to adulthood, as shown by four-log lower virus titers in adults and an average reduction of 87% in transmission efficiencies. These results demonstrate that an initial reduction in virus infection of the insect can result in a significant decrease in virus titer and transmission over the lifespan of the vector, supportive of a dose-dependent relationship in the virus-vector interaction. These findings demonstrate that plant expression of a viral protein can be an effective way to block virus transmission by insect vectors.


Assuntos
Insetos Vetores/virologia , Doenças das Plantas/virologia , Solanum lycopersicum/virologia , Tisanópteros/virologia , Tospovirus/fisiologia , Proteínas Virais/genética , Animais , Anticorpos Antivirais , Ensaio de Imunoadsorção Enzimática , Expressão Gênica , Glicoproteínas/genética , Glicoproteínas/metabolismo , Proteínas de Fluorescência Verde , Larva , Solanum lycopersicum/citologia , Solanum lycopersicum/genética , Doenças das Plantas/prevenção & controle , Plantas Geneticamente Modificadas , Coelhos , Proteínas Recombinantes de Fusão , Tospovirus/genética , Tospovirus/imunologia , Proteínas Virais/metabolismo
15.
Arch Virol ; 159(6): 1499-504, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24363189

RESUMO

Tospoviruses cause serious economic losses to a wide range of field and horticultural crops on a global scale. The NSs gene encoded by tospoviruses acts as a suppressor of host plant defense. We identified amino acid motifs that are conserved in all of the NSs proteins of tospoviruses for which the sequence is known. Using tomato spotted wilt virus (TSWV) as a model, the role of these motifs in suppressor activity of NSs was investigated. Using site-directed point mutations in two conserved motifs, glycine, lysine and valine/threonine (GKV/T) at positions 181-183 and tyrosine and leucine (YL) at positions 412-413, and an assay to measure the reversal of gene silencing in Nicotiana benthamiana line 16c, we show that substitutions (K182 to A, and L413 to A) in these motifs abolished suppressor activity of the NSs protein, indicating that these two motifs are essential for the RNAi suppressor function of tospoviruses.


Assuntos
Tospovirus/genética , Tospovirus/imunologia , Proteínas Virais/genética , Proteínas Virais/metabolismo , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Motivos de Aminoácidos , Sequência Conservada , Análise Mutacional de DNA , Inativação Gênica , Interações Hospedeiro-Patógeno , Mutagênese Sítio-Dirigida , Nicotiana/virologia
16.
Acta Virol ; 58(2): 167-72, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24957722

RESUMO

Watermelon silver mottle virus (WSMoV) is an emerging disease of cucurbit crops in South China. Production of high-quality antibodies is necessary for the development of serological methods for detection of this virus. The nucleocapsid protein (NP) gene of WSMoV was amplified from WSMoV-infected watermelon leaves by RT-PCR and cloned into vector pET-28a (+) for prokaryotic expression. After identification via enzyme digestion and sequencing, the recombinant clone was transformed into Escherichia coli Rosetta (DE3) for protein expression. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) results showed that the molecular weight of the WSMoV NP fusion protein was 34.1 kDa. The fusion protein was purified and used as antigen for the preparation of polyclonal antisera in rabbits. Results of indirect ELISA and western blot analysis showed that the antisera reacted specifically with WSMoV NP. In addition, sensitivity and specificity of the antisera were examined on a number of infected field samples by indirect ELISA. These findings will facilitate further immunological and serological studies of WSMoV. .


Assuntos
Anticorpos Antivirais/análise , Anticorpos/análise , Proteínas do Nucleocapsídeo/imunologia , Doenças das Plantas/virologia , Tospovirus/isolamento & purificação , Animais , Anticorpos/imunologia , Anticorpos Antivirais/imunologia , Western Blotting , Citrullus/virologia , Proteínas do Nucleocapsídeo/análise , Proteínas do Nucleocapsídeo/genética , Coelhos , Tospovirus/imunologia
17.
J Agric Food Chem ; 72(30): 16661-16673, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39021284

RESUMO

Rab GTPase is critical for autophagy processes and is implicated in insect immunity against viruses. In this study, we aimed to investigate the role of FoRabs in the autophagic regulation of antiviral defense against tomato spotted wilt orthotospovirus (TSWV) in Frankliniella occidentalis. Transcriptome analysis revealed the downregulation of FoRabs in viruliferous nymph and adults of F. occidentalis in response to TSWV infection. Manipulation of autophagy levels with 3-MA and Rapa treatments resulted in a 5- to 15-fold increase and a 38-64% decrease in viral titers, respectively. Additionally, interference with FoRab10 in nymphs and FoRab29 in adults led to a 20-90% downregulation of autophagy-related genes, a decrease in ATG8-II (an autophagy marker protein), and an increase in the TSWV titers by 1.5- to 2.5-fold and 1.3- to 2.0-fold, respectively. In addition, the leaf disk and the living plant methods revealed increased transmission rates of 20.8-41.6 and 68.3-88.3%, respectively. In conclusion, FoRab10 and FoRab29 play a role in the autophagic regulation of the antiviral defense in F. occidentalis nymphs and adults against TSWV, respectively. These findings offer insights into the intricate immune mechanisms functional in F. occidentalis against TSWV, suggesting potential targeted strategies for F. occidentalis and TSWV management.


Assuntos
Autofagia , Resistência à Doença , Proteínas de Insetos , Doenças das Plantas , Tisanópteros , Tospovirus , Animais , Tospovirus/fisiologia , Tospovirus/imunologia , Doenças das Plantas/virologia , Doenças das Plantas/imunologia , Doenças das Plantas/genética , Tisanópteros/virologia , Tisanópteros/imunologia , Tisanópteros/genética , Resistência à Doença/genética , Resistência à Doença/imunologia , Proteínas de Insetos/genética , Proteínas de Insetos/imunologia , Proteínas de Insetos/metabolismo , Solanum lycopersicum/virologia , Solanum lycopersicum/imunologia , Solanum lycopersicum/genética , Ninfa/imunologia , Ninfa/crescimento & desenvolvimento , Ninfa/virologia , Ninfa/genética , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/imunologia , Proteínas rab de Ligação ao GTP/metabolismo
18.
Arch Virol ; 158(1): 133-43, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23011312

RESUMO

Genetic engineering of peanut (Arachis hypogaea L.) using the gene encoding for the nucleocapsid protein (N gene) of peanut bud necrosis virus (PBNV; genus Tospovirus, family Bunyaviridae) was used to impart resistance to bud necrosis disease in peanut (PBND), a disease for which no durable resistance is available in the existing germplasm. Over 200 transgenic lines of peanut var. JL 24 were developed for which integration and expression of the transgenes was confirmed by PCR, Southern hybridization, RT-PCR and western blot analysis. The T(1) and T(2) generation transgenic plants were assayed through virus challenge in the greenhouse by using mechanical sap inoculation at 1:100 and 1:50 dilutions of PBNV, and they showed varying levels of disease incidence and intensity. Greenhouse and field evaluation with T(2) generation plants indicated somewhat superior performance of the three transgenic events that showed considerable reduction in disease incidence. However, only one of these events showed over 75 % reduction in disease incidence when compared to the untransformed control, indicating partial and non-durable resistance to PBND using the viral N-gene.


Assuntos
Arachis/imunologia , Proteínas do Nucleocapsídeo/imunologia , Doenças das Plantas/imunologia , Tospovirus/imunologia , Arachis/genética , Arachis/virologia , Resistência à Doença , Engenharia Genética , Proteínas do Nucleocapsídeo/genética , Doenças das Plantas/prevenção & controle , Doenças das Plantas/virologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/imunologia , Plantas Geneticamente Modificadas/virologia , Tospovirus/genética , Tospovirus/fisiologia
19.
Theor Appl Genet ; 124(4): 653-64, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22072100

RESUMO

Construction and improvement of a genetic map for peanut (Arachis hypogaea L.) continues to be an important task in order to facilitate quantitative trait locus (QTL) analysis and the development of tools for marker-assisted breeding. The objective of this study was to develop a comparative integrated map from two cultivated × cultivated recombinant inbred line (RIL) mapping populations and to apply in mapping Tomato spotted wilt virus (TSWV) resistance trait in peanut. A total of 4,576 simple sequence repeat (SSR) markers from three sources: published SSR markers, newly developed SSR markers from expressed sequence tags (EST) and from bacterial artificial chromosome end-sequences were used for screening polymorphisms. Two cleaved amplified polymorphic sequence markers were also included to differentiate ahFAD2A alleles and ahFAD2B alleles. A total of 324 markers were anchored on this integrated map covering 1,352.1 cM with 21 linkage groups (LGs). Combining information from duplicated loci between LGs and comparing with published diploid maps, seven homoeologous groups were defined and 17 LGs (A1-A10, B1-B4, B7, B8, and B9) were aligned to corresponding A-subgenome or B-subgenome of diploid progenitors. One reciprocal translocation was confirmed in the tetraploid-cultivated peanut genome. Several chromosomal rearrangements were observed by comparing with published cultivated peanut maps. High consistency with cultivated peanut maps derived from different populations may support this integrated map as a reliable reference map for peanut whole genome sequencing assembling. Further two major QTLs for TSWV resistance were identified for each RILs, which illustrated the application of this map.


Assuntos
Arachis/genética , Mapeamento Cromossômico , Ligação Genética/genética , Locos de Características Quantitativas , Tospovirus/patogenicidade , Arachis/imunologia , Arachis/virologia , Cromossomos Artificiais Bacterianos , DNA de Plantas/genética , Etiquetas de Sequências Expressas , Genoma de Planta , Repetições de Microssatélites/genética , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Doenças das Plantas/virologia , Reação em Cadeia da Polimerase , Polimorfismo Genético , Tospovirus/imunologia
20.
Transgenic Res ; 21(2): 231-41, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21597979

RESUMO

Tomato-infecting begomoviruses, a member of whitefly-transmitted geminivirus, cause the most devastating virus disease complex of cultivated tomato crops in the tropical and subtropical regions. Numerous strategies have been used to engineer crops for their resistance to geminiviruses. However, nearly all have concentrated on engineering the replication-associated gene (Rep), but not on a comprehensive evaluation of the entire virus genome. In this study, Tomato leaf curl Taiwan virus (ToLCTWV), a predominant tomato-infecting begomovirus in Taiwan, was subjected to the investigation of the viral gene fragments conferring resistance to geminiviruses in transgenic plants. Ten transgenic constructs covering the entire ToLCTWV genome were fused to a silencer DNA, the middle half of N gene of Tomato spot wilt virus (TSWV), to induce gene silencing and these constructs were transformed into Nicotiana benthamiana plants. Two constructs derived from IRC1 (intergenic region flanked with 5' end Rep) and C2 (partial C2 ORF) were able to render resistance to ToLCTWV in transgenic N. benthamiana plants. Transgenic plants transformed with two other constructs, C2C3 (overlapping region of C2 and C3 ORFs) and Rep2 (3' end of the C1 ORF), significantly delayed the symptom development. Detection of siRNA confirmed that the mechanism of resistance was via gene silencing. This study demonstrated for the first time the screening of the entire genome of a monopartite begomovirus to discover viral DNA fragments that might be suitable for conferring virus resistance, and which could be potential candidates for developing transgenic plants with durable and broad-spectrum resistance to a DNA virus via a gene silencing approach.


Assuntos
DNA Viral/genética , Resistência à Doença , Inativação Gênica , Genoma Viral , Plantas Geneticamente Modificadas/genética , Tospovirus/genética , DNA Viral/metabolismo , Fusão Gênica , Fases de Leitura Aberta , Doenças das Plantas/imunologia , Doenças das Plantas/virologia , Plantas Geneticamente Modificadas/imunologia , Plantas Geneticamente Modificadas/metabolismo , Plantas Geneticamente Modificadas/virologia , RNA de Plantas/genética , RNA de Plantas/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Taiwan , Nicotiana/genética , Nicotiana/imunologia , Nicotiana/metabolismo , Nicotiana/virologia , Tospovirus/imunologia , Tospovirus/metabolismo , Tospovirus/patogenicidade , Transformação Genética , Transgenes
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa