Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.727
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Nature ; 629(8013): 810-818, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38778234

RESUMO

Accurate and continuous monitoring of cerebral blood flow is valuable for clinical neurocritical care and fundamental neurovascular research. Transcranial Doppler (TCD) ultrasonography is a widely used non-invasive method for evaluating cerebral blood flow1, but the conventional rigid design severely limits the measurement accuracy of the complex three-dimensional (3D) vascular networks and the practicality for prolonged recording2. Here we report a conformal ultrasound patch for hands-free volumetric imaging and continuous monitoring of cerebral blood flow. The 2 MHz ultrasound waves reduce the attenuation and phase aberration caused by the skull, and the copper mesh shielding layer provides conformal contact to the skin while improving the signal-to-noise ratio by 5 dB. Ultrafast ultrasound imaging based on diverging waves can accurately render the circle of Willis in 3D and minimize human errors during examinations. Focused ultrasound waves allow the recording of blood flow spectra at selected locations continuously. The high accuracy of the conformal ultrasound patch was confirmed in comparison with a conventional TCD probe on 36 participants, showing a mean difference and standard deviation of difference as -1.51 ± 4.34 cm s-1, -0.84 ± 3.06 cm s-1 and -0.50 ± 2.55 cm s-1 for peak systolic velocity, mean flow velocity, and end diastolic velocity, respectively. The measurement success rate was 70.6%, compared with 75.3% for a conventional TCD probe. Furthermore, we demonstrate continuous blood flow spectra during different interventions and identify cascades of intracranial B waves during drowsiness within 4 h of recording.


Assuntos
Velocidade do Fluxo Sanguíneo , Encéfalo , Circulação Cerebrovascular , Ultrassonografia , Humanos , Velocidade do Fluxo Sanguíneo/fisiologia , Encéfalo/irrigação sanguínea , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Circulação Cerebrovascular/fisiologia , Imageamento Tridimensional/instrumentação , Imageamento Tridimensional/métodos , Erros Médicos , Razão Sinal-Ruído , Pele , Crânio , Sonolência/fisiologia , Ultrassonografia/instrumentação , Ultrassonografia/métodos , Adulto
2.
Annu Rev Biomed Eng ; 26(1): 49-65, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38166185

RESUMO

The democratization of ultrasound imaging refers to the process of making ultrasound technology more accessible. Traditionally, ultrasound imaging has been predominately used in specialized medical facilities by trained professionals. Advancements in technology and changes in the health-care landscape have inspired efforts to broaden the availability of ultrasound imaging to various settings such as remote and resource-limited areas. In this review, we highlight several key factors that have contributed to the ongoing democratization of ultrasound imaging, including portable and handheld devices, recent advancements in technology, and training and education. Examples of diagnostic point-of-care ultrasound (POCUS) imaging used in emergency and critical care, gastroenterology, musculoskeletal applications, and other practices are provided for both human and veterinary medicine. Open challenges and the future of POCUS imaging are presented, including the emerging role of artificial intelligence in technology development.


Assuntos
Sistemas Automatizados de Assistência Junto ao Leito , Ultrassonografia , Medicina Veterinária , Humanos , Ultrassonografia/métodos , Ultrassonografia/instrumentação , Medicina Veterinária/métodos , Animais , Inteligência Artificial
4.
J Acoust Soc Am ; 156(1): 214-228, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38980099

RESUMO

Media that contain ultrasound scatterers arranged in a regular spatial distribution can be considered as structured. Structural effects affect quantitative ultrasound parameters that reflect the microstructure properties. Prior studies examined structural effects using simulations or phantoms with fixed microarchitecture, focusing on a limited set of ultrasound parameters, with limited attention given to their underlying physical significance. This study aims to investigate the concordance of the physical interpretations of multiple quantitative ultrasound parameters experimentally by introducing a phantom type with an adjustable microarchitecture. The phantom consists of an aqueous solution containing superparamagnetic microspheres, acting as scatterers. The spatial arrangement of the magnetic particles is modified by applying an external magnetic field, therefore changing the degree of structure of the phantom. Quantitative ultrasound parameters are estimated in three different configurations: the magnetic field intensity is varied over time, strength, and orientation. In each experiment, the backscatter coefficient and the envelope quantitative ultrasound parameters are successfully extracted (R2 ≈ 0.94). Their physical interpretations are supported by microphotographs and geometrical considerations through concordant hypotheses. This study paves the way for the use of magnetic phantoms. This methodology could be followed to validate theoretical scattering models and the physical meanings of quantitative ultrasound parameters.


Assuntos
Imagens de Fantasmas , Ultrassonografia , Ultrassonografia/métodos , Ultrassonografia/instrumentação , Campos Magnéticos , Ondas Ultrassônicas , Espalhamento de Radiação , Modelos Teóricos
5.
Ultrason Imaging ; 46(3): 139-150, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38334055

RESUMO

Two-dimensional ultrasound transducers enable the acquisition of fully volumetric data that have been demonstrated to provide greater diagnostic information in the clinical setting and are a critical tool for emerging ultrasound methods, such as super-resolution and functional imaging. This technology, however, is not without its limitations. Due to increased fabrication complexity, some matrix probes with disjoint piezoelectric panels may require initial calibration. In this manuscript, two methods for calibrating the element positions of the Vermon 1024-channel 8 MHz matrix transducer are detailed. This calibration is a necessary step for acquiring high resolution B-mode images while minimizing transducer-based image degradation. This calibration is also necessary for eliminating vessel-doubling artifacts in super-resolution images and increasing the overall signal-to-noise ratio (SNR) of the image. Here, we show that the shape of the point spread function (PSF) can be significantly improved and PSF-doubling artifacts can be reduced by up to 10 dB via this simple calibration procedure.


Assuntos
Artefatos , Desenho de Equipamento , Razão Sinal-Ruído , Transdutores , Ultrassonografia , Calibragem , Ultrassonografia/métodos , Ultrassonografia/instrumentação , Imagens de Fantasmas
6.
Sensors (Basel) ; 24(9)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38732843

RESUMO

As the number of electronic gadgets in our daily lives is increasing and most of them require some kind of human interaction, this demands innovative, convenient input methods. There are limitations to state-of-the-art (SotA) ultrasound-based hand gesture recognition (HGR) systems in terms of robustness and accuracy. This research presents a novel machine learning (ML)-based end-to-end solution for hand gesture recognition with low-cost micro-electromechanical (MEMS) system ultrasonic transducers. In contrast to prior methods, our ML model processes the raw echo samples directly instead of using pre-processed data. Consequently, the processing flow presented in this work leaves it to the ML model to extract the important information from the echo data. The success of this approach is demonstrated as follows. Four MEMS ultrasonic transducers are placed in three different geometrical arrangements. For each arrangement, different types of ML models are optimized and benchmarked on datasets acquired with the presented custom hardware (HW): convolutional neural networks (CNNs), gated recurrent units (GRUs), long short-term memory (LSTM), vision transformer (ViT), and cross-attention multi-scale vision transformer (CrossViT). The three last-mentioned ML models reached more than 88% accuracy. The most important innovation described in this research paper is that we were able to demonstrate that little pre-processing is necessary to obtain high accuracy in ultrasonic HGR for several arrangements of cost-effective and low-power MEMS ultrasonic transducer arrays. Even the computationally intensive Fourier transform can be omitted. The presented approach is further compared to HGR systems using other sensor types such as vision, WiFi, radar, and state-of-the-art ultrasound-based HGR systems. Direct processing of the sensor signals by a compact model makes ultrasonic hand gesture recognition a true low-cost and power-efficient input method.


Assuntos
Gestos , Mãos , Aprendizado de Máquina , Redes Neurais de Computação , Humanos , Mãos/fisiologia , Reconhecimento Automatizado de Padrão/métodos , Ultrassonografia/métodos , Ultrassonografia/instrumentação , Ultrassom/instrumentação , Algoritmos
7.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 55(3): 762-768, 2024 May 20.
Artigo em Zh | MEDLINE | ID: mdl-38948302

RESUMO

Objective: Ultrasound diagnosis and treatment is easy to perform and takes little time. It is widely used in clinical practice thanks to its non-invasive, real-time, and dynamic characteristics. In the process of ultrasound diagnosis and treatment, the probe may come into contact with the skin, the mucous membranes, and even the sterile parts of the body. However, it is difficult to achieve effective real-time disinfection of the probes after use and the probes are often reused, leading to the possibility of the probes carrying multiple pathogenic bacteria. At present, the processing methods for probes at home and abroad mainly include probe cleaning, probe disinfection, and physical isolation (using probe covers or sheaths). Yet, each approach has its limitations and cannot completely prevent probe contamination and infections caused by ultrasound diagnosis and treatment. For example, when condoms are used as the probe sheath, the rate of condom breakage is relatively high. The cutting and fixing of cling film or freezer bags involves complicated procedures and is difficult to perform. Disposable plastic gloves are prone to falling off and causing contamination and are hence not in compliance with the principles of sterility. Furthermore, the imaging effect of disposable plastic gloves is poor. Therefore, there is an urgent need to explore new materials to make probe covers that can not only wrap tightly around the ultrasound probe, but also help achieve effective protection and rapid reuse. Based on the concept of physical barriers, we developed in this study a heat sealing system for the rapid reuse of ultrasound probes. The system uses a heat sealing device to shrink the protective film so that it wraps tightly against the surface of the ultrasound probe, allowing for the rapid reuse of the probe while reducing the risk of nosocomial infections. The purpose of this study is to design a heat sealing system for the rapid reuse of ultrasound probes and to verify its application effect on the rapid reuse of ultrasound probes. Methods: 1) The heat sealing system for the rapid reuse of ultrasound probes was designed and tested by integrating medical and engineering methods. The system included a protective film (a multilayer co-extruded polyolefin thermal shrinkable film) and a heat sealing device, which included heating wire components, a blower, a photoelectric switch, temperature sensors, a control and drive circuit board, etc. According to the principle of thermal shrinkage, the ultrasound probe equipped with thermal shrinkable film was rapidly heated and the film would wrap closely around the ultrasound probe placed on the top of the heat sealing machine. The ultrasound probe was ready for use after the thermal shrinkage process finished. Temperature sensors were installed on the surface of the probe to test the thermal insulation performance of the system. The operation procedures of the system are as follows: placing the ultrasound probe covered with the protective film in a certain space above the protective air vent, which is detected by the photoelectric switch; the heating device heats the thermal shrinkable film with a constant flow of hot air at a set temperature value. Then, the probe is rotated so that the thermal shrinkable film will quickly wrap around the ultrasound probe. After the heat shrinking is completed, the probe can be used directly. 2) Using the convenience sampling method, 90 patients from the Department of Anesthesiology and Perioperative Medicine, the First Affiliated Hospital of Xi'an Jiaotong University were included as the research subjects. All patients were going to undergo arterial puncture under ultrasound guidance. The subjects were divided into 3 groups, with 30 patients in each group. Three measures commonly applied in clinical practice were used to process the probes in the three groups and water-soluble fluorescent labeling was applied around the puncture site before use. In the experimental group, the probes were processed with the heat sealing system. The standard operating procedures of the heat sealing system for rapid reuse of ultrasonic probes were performed to cover the ultrasonic probe and form a physical barrier to prevent probe contamination. There were two control groups. In control group 1, disinfection wipes containing double-chain quaternary ammonium salt were used to repeatedly wipe the surface of the probe for 10-15 times, and then the probe was ready for use once it dried up. In the control group 2, a disposable protective sheath was used to cover the front end of the probe and the handle end of the sheath was tied up with threads. Comparison of the water-soluble fluorescent labeling on the surface of the probe (which reflected the colony residues on the surface of the probe) before and after use and the reuse time (i.e., the lapse of time from the end of the first use to the beginning of the second use) were made between the experimental group and the two control groups. Results: 1) The temperature inside the ultrasound probe was below 40 ℃ and the heat sealing system for rapid reuse did not affect the performance of the ultrasound probe. 2) The reuse time in the heat sealing system group, as represented by (median [P25, P75]), was (8.00 [7.00, 10.00]) s, which was significantly lower than those of the disinfection wipe group at (95.50 [8.00, 214.00]) s and the protective sleeve group at (25.00 [8.00, 51.00]) s, with the differences being statistically significant (P<0.05). No fluorescence residue was found on the probe in either the heat sealing system group or the protective sheath group after use. The fluorescence residue in the heat sealing system group was significantly lower than that in the disinfection wipes group, showing statistically significant differences (χ 2=45.882, P<0.05). Conclusion: The thermal shrinkable film designed and developed in this study can be cut and trimmed according to the size of the equipment. When the film is heated, it shrinks and wraps tightly around the equipment, forming a sturdy protective layer. With the heat sealing system for rapid reuse of ultrasonic probes, we have realized the semi-automatic connection between the thermal shrinkable film and the heating device, reducing the amount of time-consuming and complicated manual operation. Furthermore, the average reuse time is shortened and the system is easy to use, which contributes to improvements in the reuse and operation efficiency of ultrasound probes. The heat sealing system reduces colony residues on the surface of the probe and forms an effective physical barrier on the probe. No probes were damaged in the study. The heat sealing system for rapid reuse of ultrasonic probes can be used as a new method to process the ultrasonic probes.


Assuntos
Ultrassonografia , Ultrassonografia/instrumentação , Ultrassonografia/métodos , Temperatura Alta , Reutilização de Equipamento , Humanos , Desinfecção/métodos , Desinfecção/instrumentação , Desenho de Equipamento , Contaminação de Equipamentos/prevenção & controle
8.
Adv Exp Med Biol ; 1403: 3-17, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37495911

RESUMO

Ultrasound has been a popular clinical imaging modality for decades. It is a well-established means of displaying the macroscopic anatomy of soft-tissue structures. While conventional ultrasound methods, i.e., B-mode and Doppler methods, are well proven and continue to advance technically in many ways, e.g., by extending into higher frequencies and taking advantage of harmonic phenomena in tissues, fundamentally new so-called quantitative ultrasound (QUS) technologies also are emerging and offer exciting promise for making significant improvements in clinical imaging and characterization of disease. These emerging quantitative methods include spectrum analysis, image statistics, elasticity imaging, contrast-agent methods, and flow-detection and -measurement techniques. Each provides independent information. When used alone, each can provide clinically valuable imaging capabilities; when combined with each other, their capabilities may be more powerful in many applications. Furthermore, all can be used fused with other imaging modalities, such as computed tomography (CT), magnetic-resonance (MR), positron-emission-tomography (PET), or single-photon emission computerized tomography (SPECT) imaging, to offer possibly even greater improvements in detecting, diagnosing, imaging, evaluating, and monitoring disease. This chapter focuses on QUS methods that are based on spectrum analysis and image statistics.


Assuntos
Ultrassonografia , Ultrassonografia/instrumentação , Ultrassonografia/métodos
9.
Nat Chem Biol ; 16(9): 988-996, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32661379

RESUMO

Visualizing biomolecular and cellular processes inside intact living organisms is a major goal of chemical biology. However, existing molecular biosensors, based primarily on fluorescent emission, have limited utility in this context due to the scattering of light by tissue. In contrast, ultrasound can easily image deep tissue with high spatiotemporal resolution, but lacks the biosensors needed to connect its contrast to the activity of specific biomolecules such as enzymes. To overcome this limitation, we introduce the first genetically encodable acoustic biosensors-molecules that 'light up' in ultrasound imaging in response to protease activity. These biosensors are based on a unique class of air-filled protein nanostructures called gas vesicles, which we engineered to produce nonlinear ultrasound signals in response to the activity of three different protease enzymes. We demonstrate the ability of these biosensors to be imaged in vitro, inside engineered probiotic bacteria, and in vivo in the mouse gastrointestinal tract.


Assuntos
Acústica/instrumentação , Técnicas Biossensoriais/instrumentação , Enzimas/metabolismo , Trato Gastrointestinal/enzimologia , Ultrassonografia/métodos , Animais , Bactérias/enzimologia , Bactérias/genética , Técnicas Biossensoriais/métodos , Calpaína/análise , Calpaína/metabolismo , Endopeptidase Clp/genética , Endopeptidase Clp/metabolismo , Endopeptidases/análise , Endopeptidases/metabolismo , Enzimas/análise , Desenho de Equipamento , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Nanoestruturas/química , Potyvirus/enzimologia , Probióticos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Razão Sinal-Ruído , Ultrassonografia/instrumentação
10.
Opt Lett ; 46(7): 1542-1545, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33793481

RESUMO

Transparent ultrasound transducers could enable many novel applications involving both ultrasonics and optics. Recently, we reported transparent capacitive micromachined ultrasound transducers (CMUTs) and demonstrated through-illumination photoacoustic imaging. This work presents the feasibility of transparent CMUTs for combined ultrasound imaging and through-array white-light imaging with a miniature camera placed behind the array. Transparent CMUT devices are fabricated with an adhesive wafer bonding technique and provide high transparency up to 90% in visible wavelengths. Fabricated linear arrays have a central operating frequency of 9 MHz with 128 active elements. Realtime plane-wave imaging is performed for ultrasound imaging, and lateral and axial resolutions of, respectively, 234 and 338 µm are achieved. Transparent CMUT has demonstrated a high transmit sensitivity of 1.4 kPa/V per channel with a 100 VDC bias voltage. The signal-to-noise ratio for a beamformed image of wire targets is determined to be 28.4 dB. To the best of our knowledge, this is the first report of combined realtime optical and ultrasonic imaging with transparent arrays. This technology may enable one to visually see what is being scanned and scan what one sees without co-registration errors. Future applications could include multi-modality probes for interventional and surgical procedures.


Assuntos
Microtecnologia/instrumentação , Imagem Óptica/instrumentação , Transdutores , Ultrassonografia/instrumentação
11.
Crit Care ; 25(1): 134, 2021 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-33827638

RESUMO

BACKGROUND: Teleultrasound provides an effective solution to problems that arise from limited medical resources, a lack of local expertise, and scenarios where the risk of infection is high. This study aims to explore the feasibility of the application of a 5G-powered robot-assisted teleultrasound diagnostic system in an intensive care unit. METHODS: In this study, the robot-assisted teleultrasound diagnostic system MGIUS-R3 was used. Using 5G network technology, the doctor manipulates the robotic arm to perform teleultrasound examination. The doctor can adjust parameters via the teleultrasound control panel, and real-time transmission of audio, video and ultrasound images can facilitate simultaneous communication between both parties. All patients underwent robot-assisted teleultrasound examination and bedside ultrasound examination of the liver, gallbladder, pancreas, spleen, kidney, as well as assessment for pleural effusion and abdominal effusion. We evaluated the feasibility of the application of the robot-assisted teleultrasound diagnosis system in the intensive care unit in terms of consultation duration, image quality, and safety. We also compared diagnostic consistency and differences. RESULTS: Apart from one patient who was excluded due to severe intestinal gas interference and poor image quality, a total of 32 patients were included in this study. Every patient completed all relevant examinations. Among them, 20 patients were male; 12 were female. The average age of the patients was 61 ± 20 years. The average duration of teleultrasound diagnosis was 17 ± 7 min. Of the 32 patients, 26 had positive results, 6 had negative results, and 5 had inconsistent diagnoses. The overall diagnostic results were basically the same, and there were no differences in diagnostic levels between the two. The overall average image quality score was 4.73 points, which represented a high-quality image. After robot-assisted teleultrasound examination, no significant changes were observed in the vital signs of patients as compared to before examination, and no examination-related complications were found. CONCLUSION: The 5G-powered robot-assisted teleultrasound diagnostic system was associated with the benefits of clear images, simple operation, relatively high levels of consistency in terms of diagnostic results, higher levels of safety, and has considerable application value in the intensive care unit.


Assuntos
Procedimentos Cirúrgicos Robóticos/normas , Telemedicina/normas , Ultrassonografia/instrumentação , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Unidades de Terapia Intensiva/organização & administração , Unidades de Terapia Intensiva/estatística & dados numéricos , Internet , Masculino , Pessoa de Meia-Idade , Procedimentos Cirúrgicos Robóticos/instrumentação , Procedimentos Cirúrgicos Robóticos/estatística & dados numéricos , Telemedicina/métodos , Telemedicina/estatística & dados numéricos , Ultrassonografia/métodos
12.
Am J Emerg Med ; 49: 233-239, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34146922

RESUMO

OBJECTIVES: The purpose of this study was to describe the design and impact of a point-of-care ultrasound (PoCUS) workflow integrated into the electronic medical record (EMR) on PoCUS utilization, documentation compliance, and resultant revenue potential. METHODS: This was a single-center retrospective study at an academic center. The study period spanned from December 1, 2018 to June 30, 2019 (pre-implementation) to August 1, 2019 to February 29, 2020 (post-implementation). The implementation date was July 11, 2019 at which time a PoCUS workflow was integrated into the EMR in the emergency department without the purchase of middleware. Prior to this new workflow, a non-automated workflow was in place. PoCUS scan data were extracted from the EMR and archived examinations. The mean number of PoCUS examinations performed per month per 100 ED visits before and after implementation of the new workflow were compared using an unpaired t-test, stratified by all health care professionals, and attending physicians alone. The rate of documentation compliance before and after implementation of the new workflow were compared using a chi square contingency test. Potential revenue was calculated for each period by multiplying the number of eligible examinations by the respective 2020 Medicare conversion factor Relative Value Units. RESULTS: Utilization of PoCUS from pre-implementation to post-implementation increased 28.7% from 5.01 to 6.45 mean examinations per month per 100 ED visits by all health care professionals (p = 0.063), and 75.1% from 2.01 to 3.52 by attending physicians (p = 0.0001). Examinations in compliance with workflow requirements increased from 153 (14.7%) to 1307 (94.0%). The rate of workflow compliance improved from 14.7% to 94.0% of examinations (p < 0.0001). Potential revenue increased from $546.01 to $22,014.47. CONCLUSIONS: The implementation of a middleware-free PoCUS workflow at our institution was associated with increased PoCUS utilization, documentation compliance, and potential revenue.


Assuntos
Guias como Assunto/normas , Ultrassonografia/métodos , Fidelidade a Diretrizes , Humanos , Sistemas Automatizados de Assistência Junto ao Leito/economia , Sistemas Automatizados de Assistência Junto ao Leito/normas , Sistemas Automatizados de Assistência Junto ao Leito/estatística & dados numéricos , Ultrassonografia/economia , Ultrassonografia/instrumentação
13.
J Ultrasound Med ; 40(2): 385-390, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32725833

RESUMO

To date, coronavirus disease 2019 (COVID-19) has infected millions of people worldwide. Ultrasound plays an indispensable role in the diagnosis, monitoring, and follow-up of patients with COVID-19. In this study, we used a robotic tele-echography system based on a 5G communication network for remote diagnosis. The system has great potential for lung, heart, and vasculature information, medical staff protection, and resource sharing, can be a valuable tool for treating patients during the pandemic, and can be expected to expand to more specialized fields.


Assuntos
COVID-19/complicações , Robótica/métodos , Telemedicina/métodos , Ultrassonografia/métodos , Trombose Venosa/diagnóstico por imagem , Trombose Venosa/etiologia , Idoso de 80 Anos ou mais , Progressão da Doença , Coração/diagnóstico por imagem , Humanos , Extremidade Inferior/diagnóstico por imagem , Pulmão/diagnóstico por imagem , Masculino , Quarentena/métodos , SARS-CoV-2 , Telemedicina/instrumentação , Ultrassonografia/instrumentação
14.
J Clin Ultrasound ; 49(6): 546-553, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33569788

RESUMO

PURPOSE: Little is known about the diagnostic concordance of images provided by ultrasound probes with emitting frequencies below or above 20 MHz for the diagnosis of giant cell arteritis (GCA). METHODS: We compared, using Cohen's kappa statistic, data obtained with an 18-MHz and a 22-MHz probe for the ultrasonographic evaluation of temporal arteries in 80 patients referred for suspected GCA. RESULTS: The halo sign was found in 25% of cases with the 18-MHz probe and in 35% with the 22-MHz probe. The compression sign was positive in 42% of cases with the 18-MHz probe and 48% with the 22-MHz probe. GCA was finally diagnosed in 20 patients (25%). The kappa coefficient of agreement was 0.76 (P < .001) for the halo sign, and 0.75 (P < .001) for the compression sign. CONCLUSIONS: Images obtained by 18 MHz and 22-MHz frequency probes showed a good level of agreement for the diagnosis of GCA, but the 22-MHz probe yielded a correct diagnosis of GCA in 3 of the 7 patients in whom examination with the 18-MHz probe was negative.


Assuntos
Arterite de Células Gigantes/diagnóstico por imagem , Ultrassonografia/instrumentação , Idoso , Biópsia , Feminino , Arterite de Células Gigantes/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Sensibilidade e Especificidade , Artérias Temporais/diagnóstico por imagem
15.
J Stroke Cerebrovasc Dis ; 30(12): 106086, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34537688

RESUMO

BACKGROUND AND PURPOSE: To evaluate the feasibility and clinical influence of carotid artery examinations in patients admitted with stroke or TIA with hand-held ultrasound by experts, to identify individuals not in need of further carotid artery diagnostics. MATERIALS AND METHODS: Cardiologists experienced in carotid ultrasound examined 80 patients admitted to a stroke unit with suspected stroke or TIA with hand-held ultrasound devices (HUD). Grey scale and color Doppler images were stored using a GE Vscan with dual probe (phased array and linear transducer). High-end triplex ultrasound performed by a cardiologist, blinded to the details of the HUD study, was performed in all patients and used as reference. Computer tomography angiography was performed when clinically indicated. RESULTS: Stroke or TIA was diagnosed in 62 (78%) patients. Age was median (range) 72 (23-93) years. A significant stenosis (> 50% diameter reduction) was ruled out in 61 (76%) of patients by the HUD examinations. Sensitivity and specificity for diagnosing a significant stenosis was 92% and 93%, respectively. One of 12 significant stenoses was missed by HUD. All four patients in need of surgery were identified by the HUD examination. Sensitivity and specificity to identify a significant stenosis by HUD was 87% and 83%, respectively, compared to CT angiography. CONCLUSION: HUD examinations of the carotid arteries by experts, using hand-held ultrasound devices, were feasible and may reduce the need for high-end diagnostic imaging of the carotid vessels in patients with stroke and TIA. Thus, HUD may improve diagnostic workflow in stroke units in the future.


Assuntos
Artérias Carótidas , Ataque Isquêmico Transitório , AVC Isquêmico , Sistemas Automatizados de Assistência Junto ao Leito , Adulto , Idoso , Idoso de 80 Anos ou mais , Artérias Carótidas/diagnóstico por imagem , Estenose das Carótidas/diagnóstico por imagem , Desenho de Equipamento , Estudos de Viabilidade , Humanos , Ataque Isquêmico Transitório/diagnóstico por imagem , AVC Isquêmico/diagnóstico por imagem , Pessoa de Meia-Idade , Ultrassonografia/instrumentação , Adulto Jovem
16.
Undersea Hyperb Med ; 48(3): 221-226, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34390626

RESUMO

Historically, electronic devices have been generally prohibited during hyperbaric oxygen (HBO2) therapy due to risk of fire in a pressurized, oxygen-rich environment. Point-of-care ultrasound (POCUS) however has emerged as a useful imaging modality in diverse clinical settings. Hyperbaric chambers treating critically ill patients would benefit from the application of POCUS at pressure to make real-time patient assessments. Thus far, POCUS during HBO2 therapy has been limited due to required equipment modifications to meet safety standards. Here we demonstrate proof of concept, safety, and successful performance of an off-the-shelf handheld POCUS system (SonoSite iViz) in a clinical hyperbaric environment without need for modification.


Assuntos
Oxigenoterapia Hiperbárica , Testes Imediatos , Estudo de Prova de Conceito , Ultrassonografia/instrumentação , Cuidados Críticos , Estado Terminal , Fontes de Energia Elétrica , Desenho de Equipamento , Segurança de Equipamentos , Estudos de Viabilidade , Temperatura Alta , Humanos , Fatores de Tempo
17.
J Med Virol ; 92(8): 1298-1302, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-31919857

RESUMO

Sexual transmission is the most common pathway for the spread of Human papillomavirus (HPV). However, the potential for iatrogenic HPV infections is also real. Even though cleared by the Food and Drug Administration and recommended by the World Federation for Ultrasound in Medicine and Biology, several disinfectants including glutaraldehyde and o-phthalaldehyde have shown a lack of efficacy for inactivating HPV. Other methods such as ultraviolet C and concentrated hydrogen peroxide have been shown highly effective at inactivating infectious HPV. In this study, two chlorine dioxide systems are also shown to be highly efficacious at inactivating HPV. An important difference in these present studies is that as opposed to testing in suspension or using a carrier, we dried the infectious virus directly onto endocavitary ultrasound probes and nasendoscopes, therefore, validating a more realistic system to demonstrate disinfectant efficacy.


Assuntos
Alphapapillomavirus/efeitos dos fármacos , Compostos Clorados/farmacologia , Desinfetantes/farmacologia , Desinfecção/métodos , Contaminação de Equipamentos , Equipamentos e Provisões/virologia , Óxidos/farmacologia , Compostos Clorados/química , Endoscopia/instrumentação , Células HaCaT , Humanos , Óxidos/química , Infecções por Papillomavirus/prevenção & controle , Infecções por Papillomavirus/transmissão , Ultrassonografia/instrumentação
18.
Opt Lett ; 45(4): 885-888, 2020 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-32058496

RESUMO

We present an experimental proof-of-concept study on the performance of a sparse segmented annular array for optoacoustic imaging. A capacitive micromachined ultrasonic transducer was equipped with a negatively focused acoustic lens and scanned in an annular fashion to exploit the performance of the sparse array geometry proposed in our recent numerical studies [Biomed. Opt. Express10, 1545 (2019)BOEICL2156-708510.1364/BOE.10.001545; J. Biomed. Opt.23, 025004 (2018)JBOPFO1083-366810.1117/1.JBO.23.2.025004]. A dedicated water tank was made using a 3D printer for light delivery and mounting the sample. A phantom experiment was carried out to showcase the possibility of full-field optoacoustic ultrasound (OPUS) imaging and confirm the earlier numerical results. This proof of concept opens the door towards a prototype of OPUS imaging for (pre-) clinical studies.


Assuntos
Técnicas Fotoacústicas/instrumentação , Ultrassonografia/instrumentação , Desenho de Equipamento , Imagens de Fantasmas , Impressão Tridimensional , Transdutores
19.
Crit Care ; 24(1): 34, 2020 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-32014005

RESUMO

BACKGROUND: Muscle weakness following critical illness is the consequence of loss of muscle mass and alteration of muscle quality. It is associated with long-term disability. Ultrasonography is a reliable tool to quantify muscle mass, but studies that evaluate muscle quality at the critically ill bedside are lacking. Shear wave ultrasound elastography (SWE) provides spatial representation of soft tissue stiffness and measures of muscle quality. The reliability and reproducibility of SWE in critically ill patients has never been evaluated. METHODS: Two operators tested in healthy controls and in critically ill patients the intra- and inter-operator reliability of the SWE using transversal and longitudinal views of the diaphragm and limb muscles. Reliability was calculated using the intra-class correlation coefficient and a bootstrap sampling method assessed their consistency. RESULTS: We collected 560 images. Longitudinal views of the diaphragm (ICC 0.83 [0.50-0.94]), the biceps brachii (ICC 0.88 [0.67-0.96]) and the rectus femoris (ICC 0.76 [0.34-0.91]) were the most reliable views in a training set of healthy controls. Intra-class correlation coefficient for inter-operator reproducibility and intra-operator reliability was above 0.9 for all muscles in a validation set of healthy controls. In critically ill patients, inter-operator reproducibility and intra-operator 1 and 2 reliability ICCs were respectively 0.92 [0.71-0.98], 0.93 [0.82-0.98] and 0.92 [0.81-0.98] for the diaphragm; 0.96 [0.86-0.99], 0.98 [0.94-0.99] and 0.99 [0.96-1] for the biceps brachii and 0.91 [0.51-0.98], 0.97 [0.93-0.99] and 0.99 [0.97-1] for the rectus femoris. The probability to reach intra-class correlation coefficient greater than 0.8 in a 10,000 bootstrap sampling for inter-operator reproducibility was respectively 81%, 84% and 78% for the diaphragm, the biceps brachii and the rectus femoris respectively. CONCLUSIONS: SWE is a reliable technique to evaluate limb muscles and the diaphragm in both healthy controls and in critically ill patients. TRIAL REGISTRATION: The study was registered (ClinicalTrial NCT03550222).


Assuntos
Diafragma/fisiopatologia , Técnicas de Imagem por Elasticidade/instrumentação , Extremidades/fisiopatologia , Músculos/anormalidades , Ultrassonografia/instrumentação , Ultrassonografia/normas , Adulto , Estado Terminal , Técnicas de Imagem por Elasticidade/métodos , Técnicas de Imagem por Elasticidade/tendências , Feminino , França , Hospitais Universitários/organização & administração , Hospitais Universitários/estatística & dados numéricos , Humanos , Masculino , Pessoa de Meia-Idade , Músculos/fisiopatologia , Escores de Disfunção Orgânica , Estudos Prospectivos , Reprodutibilidade dos Testes , Estatísticas não Paramétricas , Ultrassonografia/métodos
20.
Dig Dis Sci ; 65(1): 82-85, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31376083

RESUMO

BACKGROUND AND AIMS: The high prevalence of nonalcoholic fatty liver disease (NAFLD) in the general population warrants determining whether pocket-sized ultrasound devices (PoCUS) might serve as point-of-care screening for NAFLD in busy office practices. METHODS: One hundred adult subjects undergoing conventional abdominal ultrasound (US) examinations for various indications were screened by PoCUS immediately prior to the conventional US procedure. The PoCUS examination only assessed the presence or absence of excess fat. Assessment of other liver pathology was not performed. Investigators (conventional US: an experienced radiologist and PoCUS: a general internist recently trained in the use of PoCUS) were blinded to the results of the alternative imaging. RESULTS: Forty patients (40%) had fatty infiltration of the liver on both conventional US and PoCUS, and 49 (49%) were negative by both modalities. A consensus was reached in two of the 11 remaining subjects with initially discrepant results. The overall sensitivity and specificity of PoCUS relative to conventional US were 91% and 88%, respectively. CONCLUSIONS: These findings support the use of PoCUS by a trained physician for point-of-care screening of patients at risk for NAFLD.


Assuntos
Tecido Adiposo/diagnóstico por imagem , Fígado/diagnóstico por imagem , Hepatopatia Gordurosa não Alcoólica/diagnóstico por imagem , Sistemas Automatizados de Assistência Junto ao Leito , Testes Imediatos , Ultrassonografia/instrumentação , Adulto , Idoso , Desenho de Equipamento , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Miniaturização , Variações Dependentes do Observador , Valor Preditivo dos Testes , Estudos Prospectivos , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa