Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 598
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Pathog ; 20(5): e1012228, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38739679

RESUMO

The arthropod exoskeleton provides protection and support and is vital for survival and adaption. The integrity and mechanical properties of the exoskeleton are often impaired after pathogenic infection; however, the detailed mechanism by which infection affects the exoskeleton remains largely unknown. Here, we report that the damage to the shrimp exoskeleton is caused by modulation of host lipid profiles after infection with white spot syndrome virus (WSSV). WSSV infection disrupts the mechanical performance of the exoskeleton by inducing the expression of a chitinase (Chi2) in the sub-cuticle epidermis and decreasing the cuticle chitin content. The induction of Chi2 expression is mediated by a nuclear receptor that can be activated by certain enriched long-chain saturated fatty acids after infection. The damage to the exoskeleton, an aftereffect of the induction of host lipogenesis by WSSV, significantly impairs the motor ability of shrimp. Blocking the WSSV-caused lipogenesis restored the mechanical performance of the cuticle and improved the motor ability of infected shrimp. Therefore, this study reveals a mechanism by which WSSV infection modulates shrimp internal metabolism resulting in phenotypic impairment, and provides new insights into the interactions between the arthropod host and virus.


Assuntos
Exoesqueleto , Metabolismo dos Lipídeos , Penaeidae , Vírus da Síndrome da Mancha Branca 1 , Animais , Penaeidae/virologia , Penaeidae/metabolismo , Exoesqueleto/metabolismo , Exoesqueleto/virologia , Vírus da Síndrome da Mancha Branca 1/fisiologia , Metabolismo dos Lipídeos/fisiologia , Interações Hospedeiro-Patógeno , Lipogênese/fisiologia
2.
J Immunol ; 213(8): 1187-1201, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39166794

RESUMO

In aquatic ectotherms, temperature plays a pivotal role in biological processes and the prevalence of viral diseases; however, the molecular mechanisms underlying these effects are not fully elucidated. In this study, we investigate the impact of elevated temperatures (32°C) on the immune response against white spot syndrome virus (WSSV) in shrimp (Litopenaeus vannamei). Our findings reveal that higher water temperatures, specifically 32°C, significantly inhibit WSSV replication and pathogenicity, thereby enhancing the survival rates of infected shrimp. Through transcriptome analysis and in vivo experiments, we identified heat shock protein 70 (HSP70) as a key factor in this thermal regulation of immunity. Shrimp maintained at 32°C, with silenced HSP70 expression, exhibited increased viral loads and reduced survival, underscoring the crucial protective role of HSP70 against WSSV at elevated temperatures. Our results further uncover the HSP70-Toll4-Dorsal-antimicrobial peptide (AMP) pathway as a key mediator of WSSV resistance at elevated temperatures. This pathway involves the interaction of HSP70 with the Toll4 receptor, resulting in the phosphorylation of Dorsal and the consequent modulation of expression of AMPs such as the anti-LPS factor (ALF) and lysozyme (LYZ) families. Taken together, these findings advance our understanding of temperature's role in disease dynamics in aquatic ectotherms, especially the unexpected roles of HSP70 in shrimp in facilitating the innate immune system's response to thermal stress, and suggest new approaches to managing WSSV in shrimp farming, such as environmental temperature control or HSP70 induction.


Assuntos
Proteínas de Choque Térmico HSP70 , Penaeidae , Transdução de Sinais , Vírus da Síndrome da Mancha Branca 1 , Animais , Vírus da Síndrome da Mancha Branca 1/fisiologia , Vírus da Síndrome da Mancha Branca 1/imunologia , Proteínas de Choque Térmico HSP70/metabolismo , Penaeidae/imunologia , Penaeidae/virologia , Transdução de Sinais/imunologia , Resistência à Doença/imunologia , Resistência à Doença/genética , Proteínas de Artrópodes/imunologia , Temperatura , Imunidade Inata , Temperatura Alta
3.
J Virol ; 98(2): e0140823, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38189252

RESUMO

Autophagy generally functions as a cellular surveillance mechanism to combat invading viruses, but viruses have evolved various strategies to block autophagic degradation and even subvert it to promote viral propagation. White spot syndrome virus (WSSV) is the most highly pathogenic crustacean virus, but little is currently known about whether crustacean viruses such as WSSV can subvert autophagic degradation for escape. Here, we show that even though WSSV proliferation triggers the accumulation of autophagosomes, autophagic degradation is blocked in the crustacean species red claw crayfish. Interestingly, the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex including CqSNAP29, CqVAMP7, and the novel autophagosome SNARE protein CqSyx12 is required for autophagic flux to restrict WSSV replication, as revealed by gene silencing experiments. Simultaneously, the expressed WSSV tegument protein VP26, which likely localizes on autophagic membrane mediated by its transmembrane region, binds the Qb-SNARE domain of CqSNAP29 to competitively inhibit the binding of CqSyx12-Qa-SNARE with CqSNAP29-Qb-SNARE; this in turn disrupts the assembly of the CqSyx12-SNAP29-VAMP7 SNARE complex, which is indispensable for the proposed fusion of autophagosomes and lysosomes. Consequently, the autophagic degradation of WSSV is likely suppressed by the expressed VP26 protein in vivo in crayfish, thus probably protecting WSSV components from degradation via the autophagosome-lysosome pathway, resulting in evasion by WSSV. Collectively, these findings highlight how a DNA virus can subvert autophagic degradation by impairing the assembly of the SNARE complex to achieve evasion, paving the way for understanding host-DNA virus interactions from an evolutionary point of view, from crustaceans to mammals.IMPORTANCEWhite spot syndrome virus (WSSV) is one of the largest animal DNA viruses in terms of its genome size and has caused huge economic losses in the farming of crustaceans such as shrimp and crayfish. Detailed knowledge of WSSV-host interactions is still lacking, particularly regarding viral escape from host immune clearance. Intriguingly, we found that the presence of WSSV-VP26 might inhibit the autophagic degradation of WSSV in vivo in the crustacean species red claw crayfish. Importantly, this study is the first to show that viral protein VP26 functions as a core factor to benefit WSSV escape by disrupting the assembly of the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex, which is necessary for the proposed fusion of autophagosomes with lysosomes for subsequent degradation. These findings highlight a novel mechanism of DNA virus evasion by blocking SNARE complex assembly and identify viral VP26 as a key candidate for anti-WSSV targeting.


Assuntos
Astacoidea , Autofagia , Vírus da Síndrome da Mancha Branca 1 , Animais , Astacoidea/metabolismo , Autofagossomos/metabolismo , Proteínas Qb-SNARE/metabolismo , Proteínas SNARE/genética , Proteínas SNARE/metabolismo , Proteínas de Ligação a Fator Solúvel Sensível a N-Etilmaleimida , Vírus da Síndrome da Mancha Branca 1/fisiologia
4.
J Virol ; 98(7): e0043324, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38888346

RESUMO

The cellular endosomal sorting complex required for transport (ESCRT) system comprises five distinct components and is involved in many different physiological processes. Recent studies have shown that different viruses rely upon the host ESCRT system for viral infection. However, whether this system is involved in white spot syndrome virus (WSSV) infection remains unclear. Here, we identified 24 homologs of ESCRT subunits in kuruma shrimp, Marsupenaeus japonicus, and found that some key components were strongly upregulated in shrimp after WSSV infection. Knockdown of key components of the ESCRT system using RNA interference inhibited virus replication, suggesting that the ESCRT system is beneficial for WSSV infection. We further focused on TSG101, a crucial member of the ESCRT-I family that plays a central role in recognizing cargo and activating the ESCRT-II and ESCRT-III complexes. TSG101 colocalized with WSSV in hemocytes. The addition of N16 (a TSG101 inhibitor) markedly decreased WSSV replication. TSG101 and ALIX of the ESCRT system interact with WSSV envelope proteins. The host proteins TSG101, RAB5, and RAB7, the viral protein VP28, and DNA were detected in endosomes isolated from hemocytes of WSSV-infected shrimp. Knockdown of Rab5 and Rab7 expression reduced viral replication. Taken together, these results suggest that the ESCRT system is hijacked by WSSV for transport through the early to late endosome pathway. Our work identified a novel requirement for the intracellular trafficking and infection of WSSV, and provided novel therapeutic targets for the prevention and control of WSSV in shrimp aquaculture. IMPORTANCE: Viruses utilize the ESCRT machinery in a variety of strategies for their replication and infection. This study revealed that the interaction of ESCRT complexes with WSSV envelope proteins plays a crucial role in WSSV infection in shrimp. The ESCRT system is conserved in the shrimp Marsupenaeus japonicus, and 24 homologs of the ESCRT system were identified in the shrimp. WSSV exploits the ESCRT system for transport and propagation via the interaction of envelope proteins with host TSG101 and ALIX in an endosome pathway-dependent manner. Understanding the underlying mechanisms of WSSV infection is important for disease control and breeding in shrimp aquaculture.


Assuntos
Proteínas de Ligação a DNA , Complexos Endossomais de Distribuição Requeridos para Transporte , Penaeidae , Replicação Viral , Vírus da Síndrome da Mancha Branca 1 , Animais , Vírus da Síndrome da Mancha Branca 1/fisiologia , Vírus da Síndrome da Mancha Branca 1/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Penaeidae/virologia , Penaeidae/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Endossomos/metabolismo , Endossomos/virologia , Hemócitos/virologia , Hemócitos/metabolismo , Interações Hospedeiro-Patógeno , Proteínas do Envelope Viral/metabolismo , Proteínas do Envelope Viral/genética , Interferência de RNA
5.
Fish Shellfish Immunol ; 148: 109503, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38479567

RESUMO

Prohibitins (PHBs) are ubiquitously expressed conserved proteins in eukaryotes that are associated with apoptosis, cancer formation, aging, stress responses and cell proliferation. However, the function of the PHBs in immune regulation has largely not been determined. In the present study, we identified PHB2 in the red swamp crayfish Procambarus clarkii. PHB2 was found to be widely distributed in several tissues, and its expression was significantly upregulated by white spot syndrome virus (WSSV) challenge. PHB2 significantly reduced the amount of WSSV in crayfish and the mortality of WSSV-infected crayfish. Here, we observed that PHB2 promotes the nuclear translocation of STAT by binding to STAT. After blocking PHB2 or STAT with antibodies or interfering with PHB2 or STAT, the expression levels of the antiviral genes ß-thymosin (PcThy-4) and crustin2 (Cru2) decreased. The gene sequence of PHB2 was analyzed and found to contain a nuclear introgression sequence (NIS). After in vivo injection of PHB2 with deletion of NIS (rΔNIS-PHB2), the nuclear translocation of STAT did not change significantly compared to that in the control group. These results suggest that PHB2 promoted the nuclear translocation of STAT through NIS and mediated the expression of antiviral proteins to inhibit WSSV infection.


Assuntos
Timosina , Vírus da Síndrome da Mancha Branca 1 , Animais , Vírus da Síndrome da Mancha Branca 1/fisiologia , Astacoidea , Alimentos Marinhos , Antivirais
6.
Fish Shellfish Immunol ; 153: 109873, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39236862

RESUMO

Haemocytes play a crucial role in the invertebrate's immune system. In our lab, five subpopulations of shrimp haemocytes were identified in the past: hyalinocytes, granulocytes, semi-granulocytes and two subpopulations of non-phagocytic cells. In the latter two subpopulations, their characteristics such as having small cytoplasmic rims and not adhering to plastic cell-culture plates are very similar to those of mammalian lymphocytes. Therefore, they were designated lymphocyte-like haemocytes. Although little is known about their function, we hypothesize, based on their morphology, that they may have a cytotoxic activity like natural killer cells, with the ability to recognize and kill target cells. In our study, K562 cells and Sf9 cells were used as xenogenous target cells to detect the cytotoxic activity of the shrimp non-adherent lymphocyte-like haemocytes. Non-adherent haemocytes were collected and mixed with K562 cells and Sf9 cells at a 5:1 ratio and the binding activity was examined under a microscope. The binding rate of non-adherent haemocytes to K562 cells and Sf9 cells reached 6.6 % and 2.4 % after 240 min of culture, respectively. Then, the killing activity of non-adherent haemocytes was detected by an EMA staining (fluorescence microscopy), which showed 3.75 % dead K562 cells and 1.025 % dead Sf9 cells, and by Sytox® blue staining (flow cytometry), which showed 4.97 % of dead K562 cells. Next, a killing assay was developed to visualize the killing activity of shrimp non-adherent haemocytes. Non-adherent haemocytes were pre-labeled in blue (CellTracker blue) and K562/Sf9 cells in green (CFSE); dead cells were differentially stained red with ethidium bromide. The cytotoxic activity increased and reached a level of 2.59 % in K562 cells and 0.925 % in Sf9 cells at 120 min after co-culture. Furthermore, in the co-cultures of non-adherent haemocytes with K562 cells and Sf9 cells, upregulation of the gene and protein expression of the cytotoxic molecules torso-like protein and granzyme B was observed by RT-qPCR at 240 min and western blotting at 180 min. Additionally, non-adherent haemocytes were co-cultured with WSSV-inoculated shrimp ovary and lymphoid organ cells to detect the cytotoxicity to homogenous target cells. The binding activity started at 60 min in both the ovary and lymphoid organ cultures and reached at 240 min 50.62 % and 40.7 %, respectively. The killing activity was detected by EMA staining and the percentage of dead ovary and lymphoid organ cells increased respectively from 10.84 % to 6.89 % at 0 min to 13.09 % and 8.37 % at 240 min. In conclusion, we demonstrated the existence of cytotoxic activity of shrimp lymphocyte-like haemocytes against xenogenous cells from mammals and insects and against WSSV-infected homogenous shrimp cells.


Assuntos
Hemócitos , Penaeidae , Animais , Hemócitos/imunologia , Penaeidae/imunologia , Células K562 , Linfócitos/imunologia , Humanos , Vírus da Síndrome da Mancha Branca 1/fisiologia
7.
Fish Shellfish Immunol ; 145: 109317, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38142020

RESUMO

Long noncoding RNA (lncRNA) is a potential regulator of biological processes, including immunity, reproduction, and development. Although several transcriptome studies have focused on responses of viral infections in several organisms, the role of lncRNAs in viral responses in shrimp is still unclear. Therefore, this work aimed to identify putative lncRNAs and study their role in white spot syndrome virus (WSSV) infection in white shrimp. The hepatopancreas transcriptome from WSSV infected shrimp was analyzed in silico to identify putative lncRNAs. Among 221,347 unigenes of the de novo assembled transcriptome, 44,539 putative lncRNAs were identified, 32 of which were differentially expressed between WSSV-infected and control shrimp. Five candidate lncRNAs were validated for their expressions in shrimp tissues and in response to WSSV infection. Lnc164 was chosen for further investigation of its role in WSSV infection. Knockdown of lnc164 prolonged survival of shrimp when challenged with WSSV, suggesting a role in shrimp immunity. In addition, lnc164 was not directly involved in the control of total hemocytes and viral loads in hemolymph of WSSV-infected shrimp. A set of lnc164-regulated genes was obtained by RNA sequencing among which 251 transcripts were differentially expressed between lnc164 knockdown and control shrimp. Six immune-related genes were validated for their expression profiles. Our work sheds light on lncRNA profiles in L. vannamei in response to WSSV infection and paves the way to a functional study of lnc164 in host antiviral response.


Assuntos
Penaeidae , RNA Longo não Codificante , Vírus da Síndrome da Mancha Branca 1 , Animais , Vírus da Síndrome da Mancha Branca 1/fisiologia , Hepatopâncreas , Transcriptoma , Crustáceos/genética
8.
Fish Shellfish Immunol ; 145: 109328, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38142022

RESUMO

In WSSV pathogenesis, the molecular mechanisms and the key host factors that regulate the viral replication and morphogenesis remain unclear. However, like most viruses, WSSV is known to induce metabolic reprogramming in several metabolic pathways including the host glutamine metabolism, and several recent reports have suggested that the sirtuins SIRT3, SIRT4, and SIRT5, which belong to a family of NAD+-dependent deacetylases, play an important role in this regulation. Here we focus on characterizing LvSIRT4 from Litopenaeus vannamei and investigate its role in regulating glutamine dehydrogenase (GDH), an important enzyme that promotes glutaminolysis and viral replication. We found that LvSIRT4 silencing led to significant decreases in both WSSV gene expression and the number of viral genome copies. Conversely, overexpression of LvSIRT4 led to significant increases in the expression of WSSV genes and the WSSV genome copy number. Immunostaining in Sf9 insect cells confirmed the presence of LvSIRT4 in the mitochondria and the co-localization of LvSIRT4 and LvGDH in the same cellular locations. In vivo gene silencing of LvSIRT4 significantly reduced the gene expression of LvGDH whereas LvSIRT4 overexpression had no effect. However, neither silencing nor overexpression had any effect on the protein expression levels of LvGDH. Lastly, although GDH activity in uninfected shrimp was unchanged, the GDH enzyme activity in WSSV-infected shrimp was significantly increased after both LvSIRT4 silencing and overexpression. This suggests that although there may be no direct regulation, LvSIRT4 might still be able to indirectly regulate LvGDH via the mediation of one or more WSSV proteins that have yet to be identified.


Assuntos
Penaeidae , Vírus da Síndrome da Mancha Branca 1 , Animais , Glutamina/metabolismo , Vírus da Síndrome da Mancha Branca 1/fisiologia , Genoma Viral , Inativação Gênica , Penaeidae/genética , Replicação Viral
9.
Fish Shellfish Immunol ; 144: 109286, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38097095

RESUMO

The forkhead box transcription factor O family protein (FOXO) acts as a transcription factor that regulates biological processes regarding DNA repair, immunity, cell cycle regulation, and other biological processes. In this study, EcFOXO was identified from the ridgetail white prawn, Exopalaemon carinicauda. EcFOXO protein contains multiple low-complexity regions and a forkhead (FH) domain. Phylogenetic tree showed that EcFOXO is clustered with crustacean FOXOs. The amino acid sequences of its FH domain are highly similar to the FH domain of FOXOs from other crustaceans. The expression of EcFOXO is altered after white spot syndrome virus (WSSV) stimulation in hepatopancreas and gills. The relationship between EcFOXO and EcRelish was explored by RNA interference (RNAi). Results showed that EcFOXO and EcRelish could positively regulate each other's expression. The expression levels of various antimicrobial peptides (AMPs) significantly reduced after interfering with EcFOXO or EcRelish. These results suggest a positive regulatory loop between EcFOXO and EcRelish, which participates in the innate immunity of ridgetail white prawn by regulating the expression of AMPs during WSSV infection. This study enriches the knowledge about the regulatory mechanism of FOXO in the innate immunity of crustaceans.


Assuntos
Palaemonidae , Vírus da Síndrome da Mancha Branca 1 , Animais , Sequência de Bases , Peptídeos Antimicrobianos , Vírus da Síndrome da Mancha Branca 1/fisiologia , Filogenia , Sequência de Aminoácidos
10.
Fish Shellfish Immunol ; 145: 109303, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38104694

RESUMO

In this study, we examined the impact of geniposide on the innate immunity of the mud crab Scylla paramamosain, specifically in relation to WSSV infection. Through the use of in vitro cell culture experiments, we assessed the effects of geniposide on various parameters of hemocyte activity in S. paramamosain. Our findings revealed that high doses of geniposide inhibited hemocyte growth, with an optimal dose of 100 mg/kg determined. Additionally, we observed that geniposide increased the total hemocyte counts in S. paramamosain following WSSV infection. Geniposide also enhanced the enzymatic activities in hemolymph following treatment. The enzymes affected by geniposide encompassed ACP (acid phosphatase), POD (phenol oxidase catalase), PO (phenoloxidase), SOD (superoxide dismutase), CAT (catalase), and LZM (lysozyme). Furthermore, the activities of ACP, POD, PO, and LZM were also observed to increase subsequent to infection with WSSV. Notably, geniposide was found to enhance the phagocytosis of V. alginolyticus within the hemocytes. Geniposide can reduce hemocyte apoptosis rates after treatment, as well as hemocytes infected with WSSV. Furthermore, geniposide treatment significantly up-regulated the expression level of Myosin, but expression levels of Astakine, C-type lectin (CTL), STAT, JAK, proPO, minichromosome maintenance protein (MCM7), caspase-3 and crustin were down-regulated in the hemocytes. Additionally, geniposide treatment inhibited WSSV replication in hemocytes of S. paramamosain, and enhanced the survival rates of mud crabs following WSSV infection. These experimental results provide evidence that geniposide can improve the immune response by regulating humoral immunity and cellular immunity, and enhance pathogen resistance in S. paramamosain.


Assuntos
Braquiúros , Iridoides , Vírus da Síndrome da Mancha Branca 1 , Animais , Catalase , Vírus da Síndrome da Mancha Branca 1/fisiologia , Proteínas de Artrópodes/genética , Imunidade Inata/genética , Hemócitos , Antivirais
11.
Fish Shellfish Immunol ; 144: 109299, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38104700

RESUMO

Cyclophilin A (CypA) or peptidylprolyl isomerase A, plays an important role in protein folding, trafficking, environmental stress, cell signaling and apoptosis etc. In shrimp, the mRNA expression level of PmCypA was stimulated by LPS. In this study, all three types of shrimp hemocytes: hyaline cell, granulocyte and semi-granulocyte expressed the PmCypA protein. The mRNA expression level of PmCypA was found to be up-regulate to four-fold in white spot syndrome virus (WSSV) infected hemocytes at 48 h. Interestingly, PmCypA protein was only detected extracellularly in shrimp plasma at 24 h post WSSV infection. To find out the function of extracellular PmCypA, the recombinant PmCypA (rPmCypA) was produced and administrated in shrimp primary hemocyte cell culture to observe the antiviral properties. In rPmCypA-administrated hemocyte cell culture, the mRNA transcripts of WSSV intermediate early gene, ie1 and early gene, wsv477 were significantly decreased but not that of late gene, vp28. To explore the antiviral mechanism of PmCypA, the expression of PmCypA in shrimp hemocytes was silenced and the expression of immune-related genes were investigated. Surprisingly, the suppression of PmCypA affected other gene expression, decreasing of penaeidin, PmHHAP and PmCaspase and increasing of C-type lectin. Our results suggested that the PmCypA might plays important role in anti-WSSV via apoptosis pathway. Further studies of PmCypA underlying antiviral mechanism are underway to show its biological function in shrimp immunity.


Assuntos
Penaeidae , Vírus da Síndrome da Mancha Branca 1 , Animais , Vírus da Síndrome da Mancha Branca 1/fisiologia , Ciclofilina A/genética , RNA Mensageiro/metabolismo , Antivirais/metabolismo , Hemócitos
12.
Fish Shellfish Immunol ; 146: 109379, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38242264

RESUMO

Cathepsin C is a cysteine protease widely found in invertebrates and vertebrates, and has the important physiological role participating in proteolysis in vivo and activating various functional proteases in immune/inflammatory cells in the animals. In order to study the role of cathepsin C in the disease resistance of shrimp, we cloned cathepsin C gene (MjcathC) from Marsupenaeus japonicus, analyzed its expression patterns in various tissues, performed MjcathC-knockdown, and finally challenged experimental shrimps with Vibrio alginolyticus and WSSV. The results have shown the full length of MjcathC is 1782 bp, containing an open reading frame of 1350 bp encoding 449 amino acids. Homology analysis revealed that the predicted amino acid sequence of MjcathC shared respectively 88.42 %, 87.36 % and 87.58 % similarity with Penaeus monodon, Fenneropenaeus penicillatus and Litopenaeus vannamei. The expression levels of MjcathC in various tissues of healthy M. japonicus are the highest in the liver, followed by the gills and heart, and the lowest in the stomach. The expression levels of MjcathC were significantly up-regulated in all examined tissues of shrimp challenged with WSSV or V. alginolyticus. After knockdown-MjcathC using RNAi technology in M. japonicus, the expression levels of lectin and heat shock protein 70 in MjcathC-knockdown shrimp were significantly down-regulated, and the mortality of MjcathC-knockdown shrimp challenged by WSSV and V. alginolyticus significantly increased. Knockdown of the MjcathC reduced the resistance of M. japonicus to WSSV and V. alginolyticus. The above results have indicated that cathepsin C may play an important role in the antibacterial and antiviral innate immunity of M. japonicus.


Assuntos
Penaeidae , Vírus da Síndrome da Mancha Branca 1 , Animais , Vírus da Síndrome da Mancha Branca 1/fisiologia , Catepsina C/genética , Sequência de Bases , Regulação da Expressão Gênica , Proteínas de Artrópodes , Clonagem Molecular , Filogenia , Imunidade Inata/genética , Resistência à Doença/genética
13.
Fish Shellfish Immunol ; 146: 109432, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38331056

RESUMO

White Spot Disease is one of the most harmful diseases of the red tail shrimp, which can cause devastating economic losses due to the highest mortality up to 100% within a few days. MicroRNAs (miRNAs) are large class of small noncoding RNAs with the ability to post-transcriptionally repress the translation of target mRNAs. MiRNAs are considered to have a significant role in the innate immune response of crustaceans, particularly in relation to antiviral defense mechanisms. Numerous crustacean miRNAs have been verified to be required in host immune defense against viral infection, however, till present, the miRNAs functions of F. penicillatus defense WSSV infection have not been studied yet. Here in this study, for the first time, miRNAs involved in the F. penicillatus immune defense against WSSV infection were identified using high-throughput sequencing platform. A total of 432 miRNAs were obtained including 402 conserved miRNAs and 30 novel predicted miRNAs. Comparative analysis between the WSSV-challenged group and the control group revealed differential expression of 159 microRNAs in response to WSSV infection. Among these, 48 were up-regulated and 111 were down-regulated. Ten candidate MicroRNAs associated with immune activities were randomly selected for qRT-PCR analysis, which confirming the expression profiling observed in the MicroRNA sequencing data. As a result, most differentially expressed miRNAs were down-regulated lead to increase the expression of various target genes that mediated immune reaction defense WSSV infection, including genes related to signal transduction, Complement and coagulation cascade, Phagocytosis, and Apoptosis. Furthermore, the genes expression of the key members in Toll and Imd signaling pathways and apoptotic signaling were mediated by microRNAs to activate host immune responses including apoptosis against WSSV infection. These results will help to understand molecular defense mechanism against WSSV infection in F. penicillatus and to develop an effective WSSV defensive strategy in shrimp farming.


Assuntos
MicroRNAs , Penaeidae , Vírus da Síndrome da Mancha Branca 1 , Animais , Vírus da Síndrome da Mancha Branca 1/fisiologia , Hepatopâncreas , MicroRNAs/metabolismo , Imunidade Inata/genética , Fagocitose
14.
Fish Shellfish Immunol ; 151: 109695, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38871140

RESUMO

As cellular chaperones, heat shock protein can facilitate viral infection in different steps of infection process. Previously, we have shown that the suppression of Litopenaeus vannamei (Lv)HSP90 not only results in a decline of white spot syndrome virus (WSSV) infection but also induces apoptosis in shrimp hemocyte cells. However, the mechanism underlying how LvHSP90 involved in WSSV infection remains largely unknown. In this study, a yeast two-hybrid assay and co-immunoprecipitation revealed that LvHSP90 interacts with the viral protein WSSV322 which function as an anti-apoptosis protein. Recombinant protein (r) LvHSP90 and rWSSV322 inhibited cycloheximide-induced hemocyte cell apoptosis in vitro. Co-silencing of LvHSP90 and WSSV322 in WSSV-infected shrimp led to a decrease in expression level of viral replication marker genes (VP28, ie-1) and WSSV copy number, while caspase 3/7 activity was noticeably induced. The number of apoptotic cells, confirmed by Hoechst 33342 staining assay and annexin V/PI staining, was significantly higher in LvHSP90 and WSSV322 co-silenced-shrimp than the control groups. Moreover, the co-silencing of LvHSP90 and WSSV322 triggered apoptosis by the mitochondrial pathway, resulting in the upregulation of pro-apoptotic protein expression (bax) and the downregulation of anti-apoptotic protein expression (bcl, Akt). This process also involved the release of cytochrome c (CytC) from the mitochondria and a decrease in mitochondrial membrane potential (MMP). These findings suggest that LvHSP90 interacts with WSSV322 to facilitate viral replication by inhibiting host apoptosis during WSSV infection.


Assuntos
Apoptose , Proteínas de Artrópodes , Proteínas de Choque Térmico HSP90 , Hemócitos , Penaeidae , Vírus da Síndrome da Mancha Branca 1 , Animais , Vírus da Síndrome da Mancha Branca 1/fisiologia , Penaeidae/imunologia , Penaeidae/virologia , Penaeidae/genética , Proteínas de Choque Térmico HSP90/genética , Proteínas de Choque Térmico HSP90/metabolismo , Proteínas de Artrópodes/genética , Proteínas de Artrópodes/imunologia , Hemócitos/imunologia , Hemócitos/virologia , Proteínas Virais/genética , Proteínas Virais/metabolismo
15.
Fish Shellfish Immunol ; 149: 109548, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38588870

RESUMO

Pentraxins (PTXs) are a family of pattern recognition proteins (PRPs) that play a role in pathogen recognition during infection via pathogen-associated molecular patterns (PAMPs). Here, we characterized a short-chained pentraxin isolated from kuruma shrimp (Marsupenaeus japonicus) hemocytes (MjPTX). MjPTX contains the pentraxin signature HxCxS/TWxS (where x can be any amino acid), although the second conserved residue of this signature differed slightly (L instead of C). In the phylogenetic analysis, MjPTX clustered closely with predicted sequences from crustaceans (shrimp, lobster, and crayfish) displaying high sequence identities exceeding 52.67 %. In contrast, MjPTX showed minimal sequence identity when compared to functionally similar proteins in other animals, with sequence identities ranging from 20.42 % (mouse) to 28.14 % (horseshoe crab). MjPTX mRNA transcript levels increased significantly after artificial infection with Vibrio parahaemolyticus (48 h), White Spot Syndrome Virus (72 h) and Yellow Head Virus (24 and 48 h). Assays done in vitro revealed that recombinant MjPTX (rMjPTX) has an ability to agglutinate Gram-negative and Gram-positive bacteria and to bind microbial polysaccharides and bacterial suspensions in the presence of Ca2+. Taken together, our results suggest that MjPTX functions as a classical pattern recognition protein in the presence of calcium ions, that is capable of binding to specific moieties present on the surface of microorganisms and facilitating their clearance.


Assuntos
Sequência de Aminoácidos , Proteínas de Artrópodes , Hemócitos , Penaeidae , Filogenia , Vibrio parahaemolyticus , Animais , Penaeidae/genética , Penaeidae/imunologia , Hemócitos/imunologia , Proteínas de Artrópodes/genética , Proteínas de Artrópodes/química , Proteínas de Artrópodes/imunologia , Vibrio parahaemolyticus/fisiologia , Imunidade Inata/genética , Alinhamento de Sequência/veterinária , Proteína C-Reativa/genética , Proteína C-Reativa/química , Proteína C-Reativa/imunologia , Regulação da Expressão Gênica/imunologia , Roniviridae/fisiologia , Vírus da Síndrome da Mancha Branca 1/fisiologia , Perfilação da Expressão Gênica/veterinária , Sequência de Bases
16.
Fish Shellfish Immunol ; 151: 109679, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38844185

RESUMO

The constitutive photomorphogenesis 9 (COP9) signalosome (CSN) typically composing of eight subunits (CSN1-8) mediates the process of deneddylation and deubiquitination. The fifth subunit of COP9 signalosome, CSN5, has special characteristics compared with the other seven subunits, and plays vital roles in the deneddylation activity and diverse cellular processes. However, the role of CSN5 in antiviral immunity is not clear. In this study, we identified 8 subunits (CSN1-8) of COP9 signalosome in shrimp Marsupenaeus japonicus. CSN1-6 were existed in all tested tissues, but CSN7-CSN8 were not detected in hepatopancreas. After WSSV challenged, the expression level of Csn1 to Csn4, and Csn6 to Csn8 were highly decreased, but the expression level of Csn5 was conspicuously increased in shrimp challenged by white spot syndrome virus (WSSV). The CSN5 was recombinantly expressed in Escherichia coli and its polyclonal antibody was prepared. The expression level of CSN5 was conspicuously increased at RNA and protein levels in the shrimp challenged by WSSV. After knockdown of Csn5 by RNA interference, the WSSV replication was obviously increased in shrimp. When injected the recombinant protein of CSN5 with the membrane penetrating peptide into shrimp, WSSV replication was inhibited and the survival rate of shrimp was significantly improved compared with control. We further analyzed the expression of antimicrobial peptides (AMPs) in Csn5-RNAi shrimp, and the results showed that the expression of several AMPs was declined significantly. These results indicate that CSN5 inhibits replication of WSSV via regulating expression of AMPs in shrimp, and the recombinant CSN5 might be used in shrimp aquaculture for the white spot syndrome disease control.


Assuntos
Proteínas de Artrópodes , Complexo do Signalossomo COP9 , Imunidade Inata , Penaeidae , Vírus da Síndrome da Mancha Branca 1 , Animais , Penaeidae/genética , Penaeidae/imunologia , Complexo do Signalossomo COP9/genética , Complexo do Signalossomo COP9/imunologia , Vírus da Síndrome da Mancha Branca 1/fisiologia , Proteínas de Artrópodes/genética , Proteínas de Artrópodes/imunologia , Proteínas de Artrópodes/química , Imunidade Inata/genética , Regulação da Expressão Gênica/imunologia , Perfilação da Expressão Gênica/veterinária , Alinhamento de Sequência/veterinária , Filogenia
17.
Fish Shellfish Immunol ; 151: 109721, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38917950

RESUMO

C-type lectins (CTLs) are an important class of pattern recognition receptors (PRRs) that exhibit structural and functional diversity in invertebrates. Repetitive DNA sequences are ubiquitous in eukaryotic genomes, representing distinct modes of genome evolution and promoting new gene generation. Our study revealed a new CTL that is composed of two long tandem repeats, abundant threonine, and one carbohydrate recognition domain (CRD) in Exopalaemon carinicauda and has been designated EcTR-CTL. The full-length cDNA of EcTR-CTL was 1242 bp long and had an open reading frame (ORF) of 999 bp that encoded a protein of 332 amino acids. The genome structure of EcTR-CTL contains 4 exons and 3 introns. The length of each repeat unit in EcTR-CTL was 198 bp, which is different from the short tandem repeats reported previously in prawns and crayfish. EcTR-CTL was abundantly expressed in the intestine and hemocytes. After Vibrio parahaemolyticus and white spot syndrome virus (WSSV) challenge, the expression level of EcTR-CTL in the intestine was upregulated. Knockdown of EcTR-CTL downregulated the expression of anti-lipopolysaccharide factor, crustin, and lysozyme during Vibrio infection. The recombinant CRD of EcTR-CTL (rCRD) could bind to bacteria, lipopolysaccharides, and peptidoglycans. Additionally, rCRD can directly bind to WSSV. These findings indicate that 1) CTLs with tandem repeats may be ubiquitous in crustaceans, 2) EcTR-CTL may act as a PRR to participate in the innate immune defense against bacteria via nonself-recognition and antimicrobial peptide regulation, and 3) EcTR-CTL may play a positive or negative role in the process of WSSV infection by capturing virions.


Assuntos
Sequência de Aminoácidos , Proteínas de Artrópodes , Imunidade Inata , Lectinas Tipo C , Palaemonidae , Filogenia , Vibrio parahaemolyticus , Vírus da Síndrome da Mancha Branca 1 , Animais , Palaemonidae/imunologia , Palaemonidae/genética , Vibrio parahaemolyticus/fisiologia , Vírus da Síndrome da Mancha Branca 1/fisiologia , Proteínas de Artrópodes/genética , Proteínas de Artrópodes/imunologia , Proteínas de Artrópodes/química , Imunidade Inata/genética , Lectinas Tipo C/genética , Lectinas Tipo C/imunologia , Lectinas Tipo C/química , Regulação da Expressão Gênica/imunologia , Perfilação da Expressão Gênica , Alinhamento de Sequência , Sequência de Bases , Sequências de Repetição em Tandem/genética
18.
Fish Shellfish Immunol ; 150: 109638, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38754650

RESUMO

C-type lectins (CTLs) are glycan-binding pattern recognition receptors (PRRs) that can bind to carbohydrates on pathogen surfaces, triggering immune responses in shrimp innate immunity. In this study, a unique Ca2+-inhibited CTL named FcLec was identified and characterized in Chinese shrimp Fenneropenaeus chinensis. The full-length cDNA sequence of FcLec was 976 bp (GenBank accession number KU361826), with a 615 bp open reading frame (ORF) encoding 204 amino acids. FcLec possesses a C-type lectin-like domain (CTLD) containing four conserved cysteines (Cys105, Cys174, Cys192, and Cys200) and two sugar-binding site structures (QPD and LNP). The tertiary structure of FcLec deduced revealed three α-helices and eight ß-pleated sheets. The mRNA expression levels of FcLec in hemocytes and the hepatopancreas were markedly elevated after stimulation with Vibrio anguillarum and white spot syndrome virus (WSSV). The recombinant FcLec protein exhibited Ca2+-independent hemagglutination and bacterial agglutination, but these activities were observed only in the presence of EDTA to chelate metal ions. These findings suggest that FcLec plays important and functionally distinct roles in the shrimp's innate immune response to bacteria and viruses, enriching the current understanding of the relationship between CTL activity and Ca2+ in invertebrates.


Assuntos
Sequência de Aminoácidos , Proteínas de Artrópodes , Imunidade Inata , Lectinas Tipo C , Penaeidae , Filogenia , Alinhamento de Sequência , Vibrio , Vírus da Síndrome da Mancha Branca 1 , Animais , Penaeidae/imunologia , Penaeidae/genética , Lectinas Tipo C/genética , Lectinas Tipo C/imunologia , Lectinas Tipo C/química , Imunidade Inata/genética , Vibrio/fisiologia , Proteínas de Artrópodes/genética , Proteínas de Artrópodes/imunologia , Proteínas de Artrópodes/química , Alinhamento de Sequência/veterinária , Vírus da Síndrome da Mancha Branca 1/fisiologia , Sequência de Bases , Cálcio/metabolismo , Regulação da Expressão Gênica/imunologia , Perfilação da Expressão Gênica/veterinária
19.
Fish Shellfish Immunol ; 151: 109666, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38838839

RESUMO

The advancement of the Penaeus vannamei industry in a sustainable manner necessitates the creation of eco-friendly and exceptionally effective feed additives. To achieve this, 720 similarly-sized juvenile shrimp (0.88 ± 0.02 g) were randomly divided into four groups in this study, with each group consisting of three replicates, each tank (400 L) containing 60 shrimp. Four experimental diets were formulated by adding 0, 500, 1000, and 1500 mg kg-1 glycerol monolaurate (GML) to the basal diet, and the feeding trial lasted for 42 days. Subsequently, a 72-h White Spot Syndrome Virus (WSSV) challenge test was conducted. Polynomial orthogonal contrasts analysis revealed that with the increase in the concentration of GML, those indicators related to growth, metabolism and immunity, exhibit linear or quadratic correlations (P < 0.05). The results indicate that the GML groups exhibited a significant improvement in the shrimp weight gain rate, specific growth rate, and a reduction in the feed conversion ratio (P < 0.05). Furthermore, the GML groups promoted the lipase activity and reduced lipid content of the shrimp, augmented the expression of triglyceride and fatty acid decomposition-related genes and lowered the levels of plasma triglycerides (P < 0.05). GML can also enhanced the humoral immunity of the shrimp by activating the Toll-like receptor and Immune deficiency immune pathways, improved the phagocytic capacity and antibacterial ability of shrimp hemocytes. The challenge test revealed that GML significantly reduced the mortality of the shrimp compared to control group. The 16S rRNA sequencing indicates that the GML group can increases the abundance of beneficial bacteria. However, 1500 mg kg-1 GML adversely affected the stability of the intestinal microbiota, significantly upregulating intestinal antimicrobial peptide-related genes and tumor necrosis factor-alpha levels (P < 0.05). In summary, 1000 mg kg-1 GML was proven to enhance the growth performance, lipid absorption and metabolism, humoral immune response, and gut microbiota condition of P. vannamei, with no negative physiological effects.


Assuntos
Ração Animal , Dieta , Suplementos Nutricionais , Microbioma Gastrointestinal , Lauratos , Metabolismo dos Lipídeos , Monoglicerídeos , Penaeidae , Animais , Penaeidae/imunologia , Penaeidae/crescimento & desenvolvimento , Penaeidae/efeitos dos fármacos , Penaeidae/microbiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Metabolismo dos Lipídeos/efeitos dos fármacos , Dieta/veterinária , Ração Animal/análise , Lauratos/farmacologia , Lauratos/administração & dosagem , Monoglicerídeos/administração & dosagem , Monoglicerídeos/farmacologia , Suplementos Nutricionais/análise , Distribuição Aleatória , Imunidade Inata/efeitos dos fármacos , Vírus da Síndrome da Mancha Branca 1/fisiologia , Relação Dose-Resposta a Droga , Digestão/efeitos dos fármacos
20.
Dis Aquat Organ ; 159: 71-78, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39145473

RESUMO

Many studies have demonstrated that long double-stranded RNAs (dsRNAs) targeting essential genes of white spot syndrome virus (WSSV) can induce a sequence-specific antiviral RNA interference (RNAi) response in shrimp, thereby offering protection against WSSV infection. However, further experimental data on the required dose of dsRNAs and the duration of protection from a single administration are necessary to establish RNAi-mediated methods as effective and practical antiviral measures. In this study, we evaluated the protective efficacy and the duration of protection provided by a single administration of various doses of long dsRNA targeting WSSV ribonucleotide reductase 2 (rr2) in white-leg shrimp Litopenaeus vannamei. The protective efficacy of long dsRNA targeting WSSV rr2 was not diminished by the reduction of the dose to 100 ng g-1 of body weight, suggesting that a relatively low dose can effectively induce an RNAi response in shrimp. Furthermore, shrimp were well-protected against WSSV challenges for up to 4 wk post-administration of the rr2-targeting long dsRNA, although the protective effect almost disappeared at 6 wk post-administration. These results suggest that long dsRNAs can provide protection against WSSV for at least 1 mo, and monthly administration of long dsRNAs could serve as a long-term protective strategy for shrimp against WSSV.


Assuntos
Penaeidae , Interferência de RNA , Vírus da Síndrome da Mancha Branca 1 , Animais , Penaeidae/virologia , Vírus da Síndrome da Mancha Branca 1/fisiologia , RNA de Cadeia Dupla , Interações Hospedeiro-Patógeno , Ribonucleotídeo Redutases/genética , Ribonucleotídeo Redutases/metabolismo , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa