Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.426
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 187(19): 5223-5225, 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39303689

RESUMO

DdmDE is a novel plasmid defense system that was discovered in the seventh pandemic Vibrio cholerae strain of the biotype O1 EI Tor. In this issue of Cell, Yang and coworkers reveal the mechanisms underlying the assembly and activation of the DdmDE defense system.


Assuntos
Plasmídeos , Vibrio cholerae , Plasmídeos/metabolismo , Plasmídeos/genética , Vibrio cholerae/genética , Vibrio cholerae/metabolismo , Vibrio cholerae/enzimologia , Proteínas Argonautas/metabolismo , Proteínas Argonautas/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , DNA Helicases/metabolismo , DNA Helicases/genética
2.
Cell ; 186(12): 2690-2704.e20, 2023 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-37295405

RESUMO

Biofilm formation is generally recognized as a bacterial defense mechanism against environmental threats, including antibiotics, bacteriophages, and leukocytes of the human immune system. Here, we show that for the human pathogen Vibrio cholerae, biofilm formation is not only a protective trait but also an aggressive trait to collectively predate different immune cells. We find that V. cholerae forms biofilms on the eukaryotic cell surface using an extracellular matrix comprising primarily mannose-sensitive hemagglutinin pili, toxin-coregulated pili, and the secreted colonization factor TcpF, which differs from the matrix composition of biofilms on other surfaces. These biofilms encase immune cells and establish a high local concentration of a secreted hemolysin to kill the immune cells before the biofilms disperse in a c-di-GMP-dependent manner. Together, these results uncover how bacteria employ biofilm formation as a multicellular strategy to invert the typical relationship between human immune cells as the hunters and bacteria as the hunted.


Assuntos
Vibrio cholerae , Animais , Humanos , Vibrio cholerae/metabolismo , Comportamento Predatório , Biofilmes , Fímbrias Bacterianas , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica
3.
Cell ; 185(21): 3966-3979.e13, 2022 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-36167071

RESUMO

Bacterial colonies composed of genetically identical individuals can diversify to yield variant cells with distinct genotypes. Variant outgrowth manifests as sectors. Here, we show that Type VI secretion system (T6SS)-driven cell death in Vibrio cholerae colonies imposes a selective pressure for the emergence of variant strains that can evade T6SS-mediated killing. T6SS-mediated cell death occurs in two distinct spatiotemporal phases, and each phase is driven by a particular T6SS toxin. The first phase is regulated by quorum sensing and drives sectoring. The second phase does not require the T6SS-injection machinery. Variant V. cholerae strains isolated from colony sectors encode mutated quorum-sensing components that confer growth advantages by suppressing T6SS-killing activity while simultaneously boosting T6SS-killing defenses. Our findings show that the T6SS can eliminate sibling cells, suggesting a role in intra-specific antagonism. We propose that quorum-sensing-controlled T6SS-driven killing promotes V. cholerae genetic diversity, including in natural habitats and during disease.


Assuntos
Sistemas de Secreção Tipo VI , Vibrio cholerae , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Variação Genética , Percepção de Quorum , Sistemas de Secreção Tipo VI/genética , Sistemas de Secreção Tipo VI/metabolismo , Vibrio cholerae/metabolismo
4.
Cell ; 176(1-2): 268-280.e13, 2019 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-30554875

RESUMO

Vibrio cholerae uses a quorum-sensing (QS) system composed of the autoinducer 3,5-dimethylpyrazin-2-ol (DPO) and receptor VqmA (VqmAVc), which together repress genes for virulence and biofilm formation. vqmA genes exist in Vibrio and in one vibriophage, VP882. Phage-encoded VqmA (VqmAPhage) binds to host-produced DPO, launching the phage lysis program via an antirepressor that inactivates the phage repressor by sequestration. The antirepressor interferes with repressors from related phages. Like phage VP882, these phages encode DNA-binding proteins and partner antirepressors, suggesting that they, too, integrate host-derived information into their lysis-lysogeny decisions. VqmAPhage activates the host VqmAVc regulon, whereas VqmAVc cannot induce phage-mediated lysis, suggesting an asymmetry whereby the phage influences host QS while enacting its own lytic-lysogeny program without interference. We reprogram phages to activate lysis in response to user-defined cues. Our work shows that a phage, causing bacterial infections, and V. cholerae, causing human infections, rely on the same signal molecule for pathogenesis.


Assuntos
Lisogenia/fisiologia , Pirazóis/metabolismo , Percepção de Quorum/fisiologia , Bacteriófagos/metabolismo , Biofilmes , Proteínas de Ligação a DNA/metabolismo , Regulação Bacteriana da Expressão Gênica/genética , Percepção de Quorum/genética , Vibrio/metabolismo , Vibrio cholerae/metabolismo , Vibrio cholerae/fisiologia , Virulência , Latência Viral
5.
Cell ; 174(2): 300-311.e11, 2018 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-30007416

RESUMO

Cyclic GMP-AMP synthase (cGAS) recognition of cytosolic DNA is critical for immune responses to pathogen replication, cellular stress, and cancer. Existing structures of the mouse cGAS-DNA complex provide a model for enzyme activation but do not explain why human cGAS exhibits severely reduced levels of cyclic GMP-AMP (cGAMP) synthesis compared to other mammals. Here, we discover that enhanced DNA-length specificity restrains human cGAS activation. Using reconstitution of cGAMP signaling in bacteria, we mapped the determinant of human cGAS regulation to two amino acid substitutions in the DNA-binding surface. Human-specific substitutions are necessary and sufficient to direct preferential detection of long DNA. Crystal structures reveal why removal of human substitutions relaxes DNA-length specificity and explain how human-specific DNA interactions favor cGAS oligomerization. These results define how DNA-sensing in humans adapted for enhanced specificity and provide a model of the active human cGAS-DNA complex to enable structure-guided design of cGAS therapeutics.


Assuntos
DNA/metabolismo , Vigilância Imunológica/fisiologia , Nucleotidiltransferases/metabolismo , Animais , Benzofuranos/química , Benzofuranos/metabolismo , Sítios de Ligação , Domínio Catalítico , Quimiotaxia/efeitos dos fármacos , DNA/química , Humanos , Camundongos , Simulação de Acoplamento Molecular , Mutagênese Sítio-Dirigida , Nucleotídeos Cíclicos/metabolismo , Nucleotídeos Cíclicos/farmacologia , Nucleotidiltransferases/antagonistas & inibidores , Nucleotidiltransferases/genética , Multimerização Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Especificidade da Espécie , Vibrio cholerae/metabolismo , Vibrio cholerae/fisiologia
6.
Cell ; 168(1-2): 172-185.e15, 2017 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-28086090

RESUMO

Pathogenic Vibrio cholerae remains a major human health concern. V. cholerae has a characteristic curved rod morphology, with a longer outer face and a shorter inner face. The mechanism and function of this curvature were previously unknown. Here, we identify and characterize CrvA, the first curvature determinant in V. cholerae. CrvA self-assembles into filaments at the inner face of cell curvature. Unlike traditional cytoskeletons, CrvA localizes to the periplasm and thus can be considered a periskeletal element. To quantify how curvature forms, we developed QuASAR (quantitative analysis of sacculus architecture remodeling), which measures subcellular peptidoglycan dynamics. QuASAR reveals that CrvA asymmetrically patterns peptidoglycan insertion rather than removal, causing more material insertions into the outer face than the inner face. Furthermore, crvA is quorum regulated, and CrvA-dependent curvature increases at high cell density. Finally, we demonstrate that CrvA promotes motility in hydrogels and confers an advantage in host colonization and pathogenesis.


Assuntos
Vibrio cholerae/citologia , Vibrio cholerae/patogenicidade , Sequência de Aminoácidos , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Locomoção , Camundongos , Peptidoglicano/metabolismo , Periplasma/metabolismo , Alinhamento de Sequência , Vibrio cholerae/genética , Vibrio cholerae/metabolismo , Virulência
7.
Cell ; 167(1): 99-110.e12, 2016 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-27616061

RESUMO

Bacterial type VI secretion system (T6SS) is a nanomachine that works similarly to a speargun. Rapid contraction of a sling (sheath) drives a long shaft (Hcp) with a sharp tip and associated effectors through the target cell membrane. We show that the amount and composition of the tip regulates initiation of full-length sheath assembly and low amount of available Hcp decreases sheath length. Importantly, we show that both tip and Hcp are exchanged by T6SS among by-standing cells within minutes of initial cell-cell contact. The translocated proteins are reused for new T6SS assemblies suggesting that tip and Hcp reach the cytosol of target cells. The efficiency of protein translocation depends on precise aiming of T6SS at the target cells. This interbacterial protein complementation can support T6SS activity in sister cells with blocked protein synthesis and also allows cooperation between strains to increase their potential to kill competition. VIDEO ABSTRACT.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas Hemolisinas/metabolismo , Sistemas de Secreção Tipo VI/metabolismo , Vibrio cholerae/metabolismo , Citosol/metabolismo , Teste de Complementação Genética , Transporte Proteico , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo
8.
Cell ; 160(5): 952-962, 2015 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-25723169

RESUMO

Bacteria use rapid contraction of a long sheath of the type VI secretion system (T6SS) to deliver effectors into a target cell. Here, we present an atomic-resolution structure of a native contracted Vibrio cholerae sheath determined by cryo-electron microscopy. The sheath subunits, composed of tightly interacting proteins VipA and VipB, assemble into a six-start helix. The helix is stabilized by a core domain assembled from four ß strands donated by one VipA and two VipB molecules. The fold of inner and middle layers is conserved between T6SS and phage sheaths. However, the structure of the outer layer is distinct and suggests a mechanism of interaction of the bacterial sheath with an accessory ATPase, ClpV, that facilitates multiple rounds of effector delivery. Our results provide a mechanistic insight into assembly of contractile nanomachines that bacteria and phages use to translocate macromolecules across membranes.


Assuntos
Proteínas de Bactérias/química , Sistemas de Secreção Bacterianos , Vibrio cholerae/metabolismo , Sequência de Aminoácidos , Microscopia Crioeletrônica , Modelos Moleculares , Dados de Sequência Molecular , Alinhamento de Sequência , Vibrio cholerae/química , Vibrio cholerae/citologia , Vibrio cholerae/ultraestrutura
9.
Cell ; 152(4): 884-94, 2013 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-23415234

RESUMO

The bacterial type VI secretion system (T6SS) is a dynamic organelle that bacteria use to target prey cells for inhibition via translocation of effector proteins. Time-lapse fluorescence microscopy has documented striking dynamics of opposed T6SS organelles in adjacent sister cells of Pseudomonas aeruginosa. Such cell-cell interactions have been termed "T6SS dueling" and likely reflect a biological process that is driven by T6SS antibacterial attack. Here, we show that T6SS dueling behavior strongly influences the ability of P. aeruginosa to prey upon heterologous bacterial species. We show that, in the case of P. aeruginosa, T6SS-dependent killing of either Vibrio cholerae or Acinetobacter baylyi is greatly stimulated by T6SS activity occurring in those prey species. Our data suggest that, in P. aeruginosa, T6SS organelle assembly and lethal counterattack are regulated by a signal that corresponds to the point of attack of the T6SS apparatus elaborated by a second aggressive T6SS(+) bacterial cell. PAPERFLICK:


Assuntos
Sistemas de Secreção Bacterianos , Bactérias Gram-Negativas/metabolismo , Interações Microbianas , Pseudomonas aeruginosa/metabolismo , Acinetobacter/metabolismo , Proteínas de Bactérias/metabolismo , Escherichia coli/metabolismo , Microscopia de Fluorescência , Transdução de Sinais , Imagem com Lapso de Tempo , Vibrio cholerae/metabolismo
10.
EMBO J ; 42(3): e113204, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36573348

RESUMO

Vibrio cholerae, the causative agent of cholera, must first be converted to its toxigenic form and cross the sugar-rich mucus barrier before it can cause disease, but whether these hurdles are linked is unclear. In this issue, Wang et al (2022) provide new evidence that mucus O-glycans directly prevent toxigenic conversion and virulence factor expression in V. cholerae.


Assuntos
Toxina da Cólera , Cólera , Mucinas , Vibrio cholerae , Fatores de Virulência , Humanos , Cólera/metabolismo , Cólera/microbiologia , Toxina da Cólera/metabolismo , Mucinas/metabolismo , Vibrio cholerae/metabolismo , Vibrio cholerae/patogenicidade , Fatores de Virulência/metabolismo , Polissacarídeos/metabolismo
11.
EMBO J ; 42(3): e111562, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36504455

RESUMO

Pandemic and endemic strains of Vibrio cholerae arise from toxigenic conversion by the CTXφ bacteriophage, a process by which CTXφ infects nontoxigenic strains of V. cholerae. CTXφ encodes the cholera toxin, an enterotoxin responsible for the watery diarrhea associated with cholera infections. Despite the critical role of CTXφ during infections, signals that affect CTXφ-driven toxigenic conversion or expression of the CTXφ-encoded cholera toxin remain poorly characterized, particularly in the context of the gut mucosa. Here, we identify mucin polymers as potent regulators of CTXφ-driven pathogenicity in V. cholerae. Our results indicate that mucin-associated O-glycans block toxigenic conversion by CTXφ and suppress the expression of CTXφ-related virulence factors, including the toxin co-regulated pilus and cholera toxin, by interfering with the TcpP/ToxR/ToxT virulence pathway. By synthesizing individual mucin glycan structures de novo, we identify the Core 2 motif as the critical structure governing this virulence attenuation. Overall, our results highlight a novel mechanism by which mucins and their associated O-glycan structures affect CTXφ-mediated evolution and pathogenicity of V. cholerae, underscoring the potential regulatory power housed within mucus.


Assuntos
Bacteriófagos , Toxina da Cólera , Mucinas , Vibrio cholerae , Virulência , Bacteriófagos/genética , Bacteriófagos/patogenicidade , Toxina da Cólera/genética , Toxina da Cólera/metabolismo , Mucinas/genética , Mucinas/metabolismo , Vibrio cholerae/genética , Vibrio cholerae/metabolismo , Virulência/genética , Virulência/fisiologia , Polissacarídeos/genética , Polissacarídeos/metabolismo
12.
Cell ; 149(2): 358-70, 2012 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-22500802

RESUMO

The function of the Vibrio 7(th) pandemic island-1 (VSP-1) in cholera pathogenesis has remained obscure. Utilizing chromatin immunoprecipitation sequencing and RNA sequencing to map the regulon of the master virulence regulator ToxT, we identify a TCP island-encoded small RNA that reduces the expression of a previously unrecognized VSP-1-encoded transcription factor termed VspR. VspR modulates the expression of several VSP-1 genes including one that encodes a novel class of di-nucleotide cyclase (DncV), which preferentially synthesizes a previously undescribed hybrid cyclic AMP-GMP molecule. We show that DncV is required for efficient intestinal colonization and downregulates V. cholerae chemotaxis, a phenotype previously associated with hyperinfectivity. This pathway couples the actions of previously disparate genomic islands, defines VSP-1 as a pathogenicity island in V. cholerae, and implicates its occurrence in 7(th) pandemic strains as a benefit for host adaptation through the production of a regulatory cyclic di-nucleotide.


Assuntos
AMP Cíclico/biossíntese , Nucleotídeos Cíclicos/metabolismo , Vibrio cholerae/metabolismo , Vibrio cholerae/patogenicidade , Animais , Proteínas de Bactérias , Sequência de Bases , Regulação Viral da Expressão Gênica , Ilhas Genômicas , Humanos , Intestinos/microbiologia , Redes e Vias Metabólicas , Camundongos , Dados de Sequência Molecular , Fósforo-Oxigênio Liases , RNA não Traduzido/metabolismo , RNA Viral/metabolismo , Alinhamento de Sequência , Fatores de Transcrição , Vibrio cholerae/genética , Virulência
13.
PLoS Genet ; 20(4): e1011234, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38598601

RESUMO

Peptidoglycan (PG) is the main component of the bacterial cell wall; it maintains cell shape while protecting the cell from internal osmotic pressure and external environmental challenges. PG synthesis is essential for bacterial growth and survival, and a series of PG modifications are required to allow expansion of the sacculus. Endopeptidases (EPs), for example, cleave the crosslinks between adjacent PG strands to allow the incorporation of newly synthesized PG. EPs are collectively essential for bacterial growth and must likely be carefully regulated to prevent sacculus degradation and cell death. However, EP regulation mechanisms are poorly understood. Here, we used TnSeq to uncover novel EP regulators in Vibrio cholerae. This screen revealed that the carboxypeptidase DacA1 (PBP5) alleviates EP toxicity. dacA1 is essential for viability on LB medium, and this essentiality was suppressed by EP overexpression, revealing that EP toxicity both mitigates, and is mitigated by, a defect in dacA1. A subsequent suppressor screen to restore viability of ΔdacA1 in LB medium identified hypomorphic mutants in the PG synthesis pathway, as well as mutations that promote EP activation. Our data thus reveal a more complex role of DacA1 in maintaining PG homeostasis than previously assumed.


Assuntos
Carboxipeptidases , Parede Celular , Endopeptidases , Peptidoglicano , Vibrio cholerae , Peptidoglicano/metabolismo , Vibrio cholerae/genética , Vibrio cholerae/metabolismo , Endopeptidases/genética , Endopeptidases/metabolismo , Carboxipeptidases/genética , Carboxipeptidases/metabolismo , Parede Celular/metabolismo , Parede Celular/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Epistasia Genética , Mutação
14.
Proc Natl Acad Sci U S A ; 121(44): e2414393121, 2024 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-39441631

RESUMO

Bacteria power rotation of an extracellular flagellar filament for swimming motility. Thousands of flagellin subunits compose the flagellar filament, which extends several microns from the bacterial surface. It is unclear whether bacteria actively control filament length. Many polarly flagellated bacteria produce shorter flagellar filaments than peritrichous bacteria, and FlaG has been reported to limit flagellar filament length in polar flagellates. However, a mechanism for how FlaG may function is unknown. We observed that deletion of flaG in the polarly flagellated pathogens Vibrio cholerae, Pseudomonas aeruginosa, and Campylobacter jejuni caused extension of flagellar filaments to lengths comparable to peritrichous bacteria. Using C. jejuni as a model to understand how FlaG controls flagellar filament length, we found that FlaG and FliS chaperone-flagellin complexes antagonize each other for interactions with FlhA in the flagellar type III secretion system (fT3SS) export gate. FlaG interacted with an understudied region of FlhA, and this interaction appeared to be enhanced in ΔfliS and FlhA FliS-binding mutants. Our data support that FlaG evolved in polarly flagellated bacteria as an antagonist to interfere with the ability of FliS to interact with and deliver flagellins to FlhA in the fT3SS export gate to control flagellar filament length so that these bacteria produce relatively shorter flagella than peritrichous counterparts. This mechanism is similar to how some gatekeepers in injectisome T3SSs prevent chaperones from delivering effector proteins until completion of the T3SS and host contact occurs. Thus, flagellar and injectisome T3SSs have convergently evolved protein antagonists to negatively impact respective T3SSs to secrete their major terminal substrates.


Assuntos
Proteínas de Bactérias , Campylobacter jejuni , Flagelos , Flagelina , Sistemas de Secreção Tipo III , Campylobacter jejuni/metabolismo , Campylobacter jejuni/genética , Flagelos/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Flagelina/metabolismo , Flagelina/genética , Sistemas de Secreção Tipo III/metabolismo , Sistemas de Secreção Tipo III/genética , Vibrio cholerae/metabolismo , Vibrio cholerae/genética , Proteínas de Membrana
15.
Annu Rev Microbiol ; 75: 151-174, 2021 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-34623898

RESUMO

Most bacteria are protected from environmental offenses by a cell wall consisting of strong yet elastic peptidoglycan. The cell wall is essential for preserving bacterial morphology and viability, and thus the enzymes involved in the production and turnover of peptidoglycan have become preferred targets for many of our most successful antibiotics. In the past decades, Vibrio cholerae, the gram-negative pathogen causing the diarrheal disease cholera, has become a major model for understanding cell wall genetics, biochemistry, and physiology. More than 100 articles have shed light on novel cell wall genetic determinants, regulatory links, and adaptive mechanisms. Here we provide the first comprehensive review of V. cholerae's cell wall biology and genetics. Special emphasis is placed on the similarities and differences with Escherichia coli, the paradigm for understanding cell wall metabolism and chemical structure in gram-negative bacteria.


Assuntos
Vibrio cholerae , Biologia , Parede Celular/metabolismo , Escherichia coli/metabolismo , Peptidoglicano/metabolismo , Vibrio cholerae/genética , Vibrio cholerae/metabolismo
16.
Annu Rev Cell Dev Biol ; 28: 439-62, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23057745

RESUMO

The second messenger bis-(3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP) has emerged as a broadly conserved intracellular signaling molecule. This soluble molecule is important for controlling biofilm formation, adhesion, motility, virulence, and cell morphogenesis in diverse bacterial species. But how is the typical bacterial cell able to coordinate the actions of upward of 50 proteins involved in synthesizing, degrading, and binding c-di-GMP? Understanding the specificity of c-di-GMP signaling in the context of so many enzymes involved in making, breaking, and binding the second messenger will be possible only through mechanistic studies of its output systems. Here we discuss three newly characterized c-di-GMP effector systems that are best understood in terms of molecular and structural detail. As they are conserved across many bacterial species, they likely will serve as central paradigms for c-di-GMP output systems and contribute to our understanding of how bacteria control critical aspects of their biology.


Assuntos
Biofilmes , Escherichia coli/fisiologia , Guanosina Monofosfato/fisiologia , Vibrio cholerae/fisiologia , Escherichia coli/genética , Escherichia coli/metabolismo , Flagelos/metabolismo , Flagelos/fisiologia , Regulação Bacteriana da Expressão Gênica , Guanosina Monofosfato/metabolismo , Sistemas do Segundo Mensageiro , Vibrio cholerae/genética , Vibrio cholerae/metabolismo
17.
Nucleic Acids Res ; 52(2): 708-723, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38000366

RESUMO

Replication of Vibrio cholerae chromosome 2 (Chr2) initiates when the Chr1 locus, crtS (Chr2 replication triggering site) duplicates. The site binds the Chr2 initiator, RctB, and the binding increases when crtS is complexed with the transcription factor, Lrp. How Lrp increases the RctB binding and how RctB is subsequently activated for initiation by the crtS-Lrp complex remain unclear. Here we show that Lrp bends crtS DNA and possibly contacts RctB, acts that commonly promote DNA-protein interactions. To understand how the crtS-Lrp complex enhances replication, we isolated Tn-insertion and point mutants of RctB, selecting for retention of initiator activity without crtS. Nearly all mutants (42/44) still responded to crtS for enhancing replication, exclusively in an Lrp-dependent manner. The results suggest that the Lrp-crtS controls either an essential function or more than one function of RctB. Indeed, crtS modulates two kinds of RctB binding to the origin of Chr2, ori2, both of which we find to be Lrp-dependent. Some point mutants of RctB that are optimally modulated for ori2 binding without crtS still remained responsive to crtS and Lrp for replication enhancement. We infer that crtS-Lrp functions as a unit, which has an overarching role, beyond controlling initiator binding to ori2.


Assuntos
Proteínas de Bactérias , Replicação do DNA , Proteína Reguladora de Resposta a Leucina , Vibrio cholerae , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , DNA/metabolismo , Regulação Bacteriana da Expressão Gênica , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Vibrio cholerae/genética , Vibrio cholerae/metabolismo , Proteína Reguladora de Resposta a Leucina/metabolismo
18.
Nucleic Acids Res ; 52(6): 2761-2775, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38471818

RESUMO

CRISPR-Cas provides adaptive immunity in prokaryotes. Type III CRISPR systems detect invading RNA and activate the catalytic Cas10 subunit, which generates a range of nucleotide second messengers to signal infection. These molecules bind and activate a diverse range of effector proteins that provide immunity by degrading viral components and/or by disturbing key aspects of cellular metabolism to slow down viral replication. Here, we focus on the uncharacterised effector Csx23, which is widespread in Vibrio cholerae. Csx23 provides immunity against plasmids and phage when expressed in Escherichia coli along with its cognate type III CRISPR system. The Csx23 protein localises in the membrane using an N-terminal transmembrane α-helical domain and has a cytoplasmic C-terminal domain that binds cyclic tetra-adenylate (cA4), activating its defence function. Structural studies reveal a tetrameric structure with a novel fold that binds cA4 specifically. Using pulse EPR, we demonstrate that cA4 binding to the cytoplasmic domain of Csx23 results in a major perturbation of the transmembrane domain, consistent with the opening of a pore and/or disruption of membrane integrity. This work reveals a new class of cyclic nucleotide binding protein and provides key mechanistic detail on a membrane-associated CRISPR effector.


Many anti-viral defence systems generate a cyclic nucleotide signal that activates cellular defences in response to infection. Type III CRISPR systems use a specialised polymerase to make cyclic oligoadenylate (cOA) molecules from ATP. These can bind and activate a range of effector proteins that slow down viral replication. In this study, we focussed on the Csx23 effector from the human pathogen Vibrio cholerae ­ a trans-membrane protein that binds a cOA molecule, leading to anti-viral immunity. Structural studies revealed a new class of nucleotide recognition domain, where cOA binding is transmitted to changes in the trans-membrane domain, most likely resulting in membrane depolarisation. This study highlights the diversity of mechanisms for anti-viral defence via nucleotide signalling.


Assuntos
Proteínas de Bactérias , Proteínas Associadas a CRISPR , Vibrio cholerae , Nucleotídeos de Adenina/metabolismo , Proteínas Associadas a CRISPR/metabolismo , Sistemas CRISPR-Cas/genética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Nucleotídeos Cíclicos , Sistemas do Segundo Mensageiro , Proteínas de Bactérias/metabolismo , Vibrio cholerae/metabolismo
19.
Proc Natl Acad Sci U S A ; 120(29): e2304378120, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37428913

RESUMO

ToxR, a Vibrio cholerae transmembrane one-component signal transduction factor, lies within a regulatory cascade that results in the expression of ToxT, toxin coregulated pilus, and cholera toxin. While ToxR has been extensively studied for its ability to activate or repress various genes in V. cholerae, here we present the crystal structures of the ToxR cytoplasmic domain bound to DNA at the toxT and ompU promoters. The structures confirm some predicted interactions, yet reveal other unexpected promoter interactions with implications for other potential regulatory roles for ToxR. We show that ToxR is a versatile virulence regulator that recognizes diverse and extensive, eukaryotic-like regulatory DNA sequences, that relies more on DNA structural elements than specific sequences for binding. Using this topological DNA recognition mechanism, ToxR can bind both in tandem and in a twofold inverted-repeat-driven manner. Its regulatory action is based on coordinated multiple binding to promoter regions near the transcription start site, which can remove the repressing H-NS proteins and prepares the DNA for optimal interaction with the RNA polymerase.


Assuntos
Vibrio cholerae , Vibrio cholerae/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Ligação a DNA/metabolismo , Virulência , Proteínas de Bactérias/metabolismo , DNA/genética , DNA/metabolismo , Regulação Bacteriana da Expressão Gênica
20.
PLoS Genet ; 19(5): e1010767, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37172034

RESUMO

Vibrio cholerae is a facultative pathogen that primarily occupies marine environments. In this niche, V. cholerae commonly interacts with the chitinous shells of crustacean zooplankton. As a chitinolytic microbe, V. cholerae degrades insoluble chitin into soluble oligosaccharides. Chitin oligosaccharides serve as both a nutrient source and an environmental cue that induces a strong transcriptional response in V. cholerae. Namely, these oligosaccharides induce the chitin sensor, ChiS, to activate the genes required for chitin utilization and horizontal gene transfer by natural transformation. Thus, interactions with chitin impact the survival of V. cholerae in marine environments. Chitin is a complex carbon source for V. cholerae to degrade and consume, and the presence of more energetically favorable carbon sources can inhibit chitin utilization. This phenomenon, known as carbon catabolite repression (CCR), is mediated by the glucose-specific Enzyme IIA (EIIAGlc) of the phosphoenolpyruvate-dependent phosphotransferase system (PTS). In the presence of glucose, EIIAGlc becomes dephosphorylated, which inhibits ChiS transcriptional activity by an unknown mechanism. Here, we show that dephosphorylated EIIAGlc interacts with ChiS. We also isolate ChiS suppressor mutants that evade EIIAGlc-dependent repression and demonstrate that these alleles no longer interact with EIIAGlc. These findings suggest that EIIAGlc must interact with ChiS to exert its repressive effect. Importantly, the ChiS suppressor mutations we isolated also relieve repression of chitin utilization and natural transformation by EIIAGlc, suggesting that CCR of these behaviors is primarily regulated through ChiS. Together, our results reveal how nutrient conditions impact the fitness of an important human pathogen in its environmental reservoir.


Assuntos
Repressão Catabólica , Vibrio cholerae , Humanos , Vibrio cholerae/genética , Vibrio cholerae/metabolismo , Quitina/genética , Quitina/metabolismo , Repressão Catabólica/genética , Oligossacarídeos/genética , Oligossacarídeos/metabolismo , Regulação Bacteriana da Expressão Gênica
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa