Your browser doesn't support javascript.
loading
Dysplastic hepatocytes develop nuclear inclusions in a mouse model of viral hepatitis.
Thakur, Priyanka; Lamoke, Folami; Chaffin, Joanna M; Bartoli, Manuela; Lee, Jeffrey R; Duncan, Michael B.
Afiliação
  • Thakur P; Section of Gastroenterology/Hepatology, Department of Medicine, Medical College of Georgia, Georgia Regents University, Augusta, Georgia, United States of America.
  • Lamoke F; Department of Pharmacology, Medical College of Georgia, Georgia Regents University, Augusta, Georgia, United States of America; Department of Ophthalmology, Medical College of Georgia, Georgia Regents University, Augusta, Georgia, United States of America.
  • Chaffin JM; Department of Pathology, Medical College of Georgia, Georgia Regents University, Augusta, Georgia, United States of America.
  • Bartoli M; Department of Pharmacology, Medical College of Georgia, Georgia Regents University, Augusta, Georgia, United States of America; Department of Ophthalmology, Medical College of Georgia, Georgia Regents University, Augusta, Georgia, United States of America.
  • Lee JR; Department of Pathology, Medical College of Georgia, Georgia Regents University, Augusta, Georgia, United States of America; Georgia Regents University Cancer Center, Medical College of Georgia, Georgia Regents University, Augusta, Georgia, United States of America; Charlie Norwood Veterans Affairs
  • Duncan MB; Section of Gastroenterology/Hepatology, Department of Medicine, Medical College of Georgia, Georgia Regents University, Augusta, Georgia, United States of America; Georgia Regents University Cancer Center, Medical College of Georgia, Georgia Regents University, Augusta, Georgia, United States of Ame
PLoS One ; 9(6): e99872, 2014.
Article em En | MEDLINE | ID: mdl-24932583
Viral hepatitis resulting in chronic liver disease is an important clinical challenge and insight into the cellular processes that drive pathogenesis will be critical in order to develop new diagnostic and therapeutic options. Nuclear inclusions in viral and non-viral hepatitis are well documented and have diagnostic significance in some disease contexts. However, the origins and functional consequences of these nuclear inclusions remain elusive. To date the clinical observation of nuclear inclusions in viral and non-viral hepatitis has not been explored at depth in murine models of liver disease. Herein, we report that in a transgenic model of hepatitis B surface antigen mediated hepatitis, murine hepatocytes exhibit nuclear inclusions. Cells bearing nuclear inclusions were more likely to express markers of cell proliferation. We also established a correlation between these inclusions and oxidative stress. N-acetyl cysteine treatment effectively reduced oxidative stress levels, relieved endoplasmic reticulum (ER) stress, and the number of nuclear inclusions we observed in the transgenic mice. Our results suggest that the presence of nuclear inclusions in hepatocytes correlates with oxidative stress and cellular proliferation in a model of antigen mediated hepatitis.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Hepatócitos / Corpos de Inclusão Intranuclear / Hepatite Limite: Animals Idioma: En Revista: PLoS One Assunto da revista: CIENCIA / MEDICINA Ano de publicação: 2014 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Hepatócitos / Corpos de Inclusão Intranuclear / Hepatite Limite: Animals Idioma: En Revista: PLoS One Assunto da revista: CIENCIA / MEDICINA Ano de publicação: 2014 Tipo de documento: Article País de afiliação: Estados Unidos