Your browser doesn't support javascript.
loading
Context-dependent coding in single neurons.
Mease, Rebecca A; Lee, SangWook; Moritz, Anna T; Powers, Randall K; Binder, Marc D; Fairhall, Adrienne L.
Afiliação
  • Mease RA; University of Washington, Seattle, WA, USA.
J Comput Neurosci ; 37(3): 459-80, 2014 Dec.
Article em En | MEDLINE | ID: mdl-24990803
The linear-nonlinear cascade model (LN model) has proven very useful in representing a neural system's encoding properties, but has proven less successful in reproducing the firing patterns of individual neurons whose behavior is strongly dependent on prior firing history. While the cell's behavior can still usefully be considered as feature detection acting on a fluctuating input, some of the coding capacity of the cell is taken up by the increased firing rate due to a constant "driving" direct current (DC) stimulus. Furthermore, both the DC input and the post-spike refractory period generate regular firing, reducing the spike-timing entropy available for encoding time-varying fluctuations. In this paper, we address these issues, focusing on the example of motoneurons in which an afterhyperpolarization (AHP) current plays a dominant role regularizing firing behavior. We explore the accuracy and generalizability of several alternative models for single neurons under changes in DC and variance of the stimulus input. We use a motoneuron simulation to compare coding models in neurons with and without the AHP current. Finally, we quantify the tradeoff between instantaneously encoding information about fluctuations and about the DC.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Potenciais de Ação / Modelos Neurológicos / Neurônios Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Revista: J Comput Neurosci Assunto da revista: INFORMATICA MEDICA / NEUROLOGIA Ano de publicação: 2014 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Potenciais de Ação / Modelos Neurológicos / Neurônios Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Revista: J Comput Neurosci Assunto da revista: INFORMATICA MEDICA / NEUROLOGIA Ano de publicação: 2014 Tipo de documento: Article País de afiliação: Estados Unidos