Your browser doesn't support javascript.
loading
Systems biology of cancer: a challenging expedition for clinical and quantitative biologists.
Korsunsky, Ilya; McGovern, Kathleen; LaGatta, Tom; Olde Loohuis, Loes; Grosso-Applewhite, Terri; Griffeth, Nancy; Mishra, Bud.
Afiliação
  • Korsunsky I; Department of Computer Science, Courant Institute, New York University , New York, NY , USA.
  • McGovern K; Department of Mathematics and Statistics, Hunter College, City University of New York , New York, NY , USA.
  • LaGatta T; Department of Mathematics, Courant Institute, New York University , New York, NY , USA.
  • Olde Loohuis L; Department of Computer Science, The Graduate Center, City University of New York , New York, NY , USA.
  • Grosso-Applewhite T; Department of Computer Science, The Graduate Center, City University of New York , New York, NY , USA.
  • Griffeth N; Department of Mathematics and Computer Science, Lehman College, City University of New York , New York, NY , USA.
  • Mishra B; Department of Computer Science, Courant Institute, New York University , New York, NY , USA ; Department of Mathematics, Courant Institute, New York University , New York, NY , USA.
Article em En | MEDLINE | ID: mdl-25191654
A systems-biology approach to complex disease (such as cancer) is now complementing traditional experience-based approaches, which have typically been invasive and expensive. The rapid progress in biomedical knowledge is enabling the targeting of disease with therapies that are precise, proactive, preventive, and personalized. In this paper, we summarize and classify models of systems biology and model checking tools, which have been used to great success in computational biology and related fields. We demonstrate how these models and tools have been used to study some of the twelve biochemical pathways implicated in but not unique to pancreatic cancer, and conclude that the resulting mechanistic models will need to be further enhanced by various abstraction techniques to interpret phenomenological models of cancer progression.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Tipo de estudo: Qualitative_research Idioma: En Revista: Front Bioeng Biotechnol Ano de publicação: 2014 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Base de dados: MEDLINE Tipo de estudo: Qualitative_research Idioma: En Revista: Front Bioeng Biotechnol Ano de publicação: 2014 Tipo de documento: Article País de afiliação: Estados Unidos