Your browser doesn't support javascript.
loading
DIRECTIONAL OPTICAL COHERENCE TOMOGRAPHY PROVIDES ACCURATE OUTER NUCLEAR LAYER AND HENLE FIBER LAYER MEASUREMENTS.
Lujan, Brandon J; Roorda, Austin; Croskrey, Jason A; Dubis, Adam M; Cooper, Robert F; Bayabo, Jan-Kristine; Duncan, Jacque L; Antony, Bhavna J; Carroll, Joseph.
Afiliação
  • Lujan BJ; *Vision Science Graduate Group, School of Optometry, University of California, Berkeley, Berkeley, California; †West Coast Retina Medical Group, San Francisco, California; ‡Department of Ophthalmology, Medical College of Wisconsin, Milwaukee, Wisconsin; §Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin; ¶Department of Biomedical Engineering, Marquette University, Milwaukee, Wisconsin; and **Department of Ophthalmology, University of Califor
Retina ; 35(8): 1511-20, 2015 Aug.
Article em En | MEDLINE | ID: mdl-25829348
ABSTRACT

PURPOSE:

The outer nuclear layer (ONL) contains photoreceptor nuclei, and its thickness is an important biomarker for retinal degenerations. Accurate ONL thickness measurements are obscured in standard optical coherence tomography (OCT) images because of Henle fiber layer (HFL). Improved differentiation of the ONL and HFL boundary is made possible by using directional OCT, a method that purposefully varies the pupil entrance position of the OCT beam.

METHODS:

Fifty-seven normal eyes were imaged using multiple pupil entry positions with a commercial spectral domain OCT system. Cross-sectional image sets were registered to each other and segmented at the top of HFL, the border of HFL and the ONL and at the external limiting membrane. Thicknesses of the ONL and HFL were measured and analyzed.

RESULTS:

The true ONL and HFL thicknesses varied substantially by eccentricity and between individuals. The true macular ONL thickness comprised an average of 54.6% of measurements that also included HFL. The ONL and HFL thicknesses at specific retinal eccentricities were poorly correlated.

CONCLUSION:

Accurate ONL and HFL thickness measurements are made possible by the optical contrast of directional OCT. Distinguishing these individual layers can improve clinical trial endpoints and assessment of disease progression.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Tomografia de Coerência Óptica / Neurônios Retinianos / Células Ependimogliais / Fibras Nervosas Tipo de estudo: Observational_studies Limite: Adolescent / Adult / Female / Humans / Male Idioma: En Revista: Retina Ano de publicação: 2015 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Tomografia de Coerência Óptica / Neurônios Retinianos / Células Ependimogliais / Fibras Nervosas Tipo de estudo: Observational_studies Limite: Adolescent / Adult / Female / Humans / Male Idioma: En Revista: Retina Ano de publicação: 2015 Tipo de documento: Article