Your browser doesn't support javascript.
loading
Giant Pressure-Driven Lattice Collapse Coupled with Intermetallic Bonding and Spin-State Transition in Manganese Chalcogenides.
Wang, Yonggang; Bai, Ligang; Wen, Ting; Yang, Liuxiang; Gou, Huiyang; Xiao, Yuming; Chow, Paul; Pravica, Michael; Yang, Wenge; Zhao, Yusheng.
Afiliação
  • Wang Y; High Pressure Science and Engineering Center, University of Nevada Las Vegas, Las Vegas, NV, 89154, USA. yyggwang@gmail.com.
  • Bai L; High Pressure Synergetic Consortium (HPSynC), Geophysical Laboratory, Carnegie Institution of Washington, Argonne, IL, 60439, USA. yyggwang@gmail.com.
  • Wen T; High Pressure Collaborative Access Team (HPCAT), Geophysical Laboratory, Carnegie Institution of Washington, Argonne, IL, 60439, USA.
  • Yang L; Institute of Nanostructured Functional Materials, Huanghe Science and Technology College, Zhengzhou, Henan, 450006, China.
  • Gou H; High Pressure Synergetic Consortium (HPSynC), Geophysical Laboratory, Carnegie Institution of Washington, Argonne, IL, 60439, USA.
  • Xiao Y; Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai, 201203, China.
  • Chow P; Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai, 201203, China.
  • Pravica M; High Pressure Collaborative Access Team (HPCAT), Geophysical Laboratory, Carnegie Institution of Washington, Argonne, IL, 60439, USA.
  • Yang W; High Pressure Collaborative Access Team (HPCAT), Geophysical Laboratory, Carnegie Institution of Washington, Argonne, IL, 60439, USA.
  • Zhao Y; High Pressure Science and Engineering Center, University of Nevada Las Vegas, Las Vegas, NV, 89154, USA.
Angew Chem Int Ed Engl ; 55(35): 10350-3, 2016 08 22.
Article em En | MEDLINE | ID: mdl-27461135
ABSTRACT
Materials with an abrupt volume collapse of more than 20 % during a pressure-induced phase transition are rarely reported. In such an intriguing phenomenon, the lattice may be coupled with dramatic changes of orbital and/or the spin-state of the transition metal. A combined in situ crystallography and electron spin-state study to probe the mechanism of the pressure-driven lattice collapse in MnS and MnSe is presented. Both materials exhibit a rocksalt-to-MnP phase transition under compression with ca. 22 % unit-cell volume changes, which was found to be coupled with the Mn(2+) (d(5) ) spin-state transition from S=5/2 to S=1/2 and the formation of Mn-Mn intermetallic bonds as supported by the metallic transport behavior of their high-pressure phases. Our results reveal the mutual relationship between pressure-driven lattice collapse and the orbital/spin-state of Mn(2+) in manganese chalcogenides and also provide deeper insights toward the exploration of new metastable phases with exceptional functionalities.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Revista: Angew Chem Int Ed Engl Ano de publicação: 2016 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Base de dados: MEDLINE Idioma: En Revista: Angew Chem Int Ed Engl Ano de publicação: 2016 Tipo de documento: Article País de afiliação: Estados Unidos