Your browser doesn't support javascript.
loading
Tetrahydrobiopterin oral therapy recouples eNOS and ameliorates chronic hypoxia-induced pulmonary hypertension in newborn pigs.
Dikalova, Anna; Aschner, Judy L; Kaplowitz, Mark R; Summar, Marshall; Fike, Candice D.
Afiliação
  • Dikalova A; Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, Tennessee; and Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee.
  • Aschner JL; Department of Pediatrics, Albert Einstein College of Medicine and the Children's Hospital at Montefiore, New York, New York.
  • Kaplowitz MR; Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee; Department of Pediatrics, the University of Utah School of Medicine, Salt Lake City, Utah; and.
  • Summar M; Division of Genetics and Metabolism, Children's National Medical Center, Washington, District of Columbia.
  • Fike CD; Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee; Department of Pediatrics, the University of Utah School of Medicine, Salt Lake City, Utah; and candice.fike@hsc.utah.edu.
Am J Physiol Lung Cell Mol Physiol ; 311(4): L743-L753, 2016 Oct 01.
Article em En | MEDLINE | ID: mdl-27542807
ABSTRACT
We previously showed that newborn piglets who develop pulmonary hypertension during exposure to chronic hypoxia have diminished pulmonary vascular nitric oxide (NO) production and evidence of endothelial NO synthase (eNOS) uncoupling (Fike CD, Dikalova A, Kaplowitz MR, Cunningham G, Summar M, Aschner JL. Am J Respir Cell Mol Biol 53 255-264, 2015). Tetrahydrobiopterin (BH4) is a cofactor that promotes eNOS coupling. Current clinical strategies typically invoke initiating treatment after the diagnosis of pulmonary hypertension, rather than prophylactically. The major purpose of this study was to determine whether starting treatment with an oral BH4 compound, sapropterin dihydrochloride (sapropterin), after the onset of pulmonary hypertension would recouple eNOS in the pulmonary vasculature and ameliorate disease progression in chronically hypoxic piglets. Normoxic (control) and hypoxic piglets were studied. Some hypoxic piglets received oral sapropterin starting on day 3 of hypoxia and continued throughout an additional 7 days of hypoxic exposure. Catheters were placed for hemodynamic measurements, and pulmonary arteries were dissected to assess eNOS dimer-to-monomer ratios (a measure of eNOS coupling), NO production, and superoxide (O2·-) generation. Although higher than in normoxic controls, pulmonary vascular resistance was lower in sapropterin-treated hypoxic piglets than in untreated hypoxic piglets. Consistent with eNOS recoupling, eNOS dimer-to-monomer ratios and NO production were greater and O2·- generation was less in pulmonary arteries from sapropterin-treated than untreated hypoxic animals. When started after disease onset, oral sapropterin treatment inhibits chronic hypoxia-induced pulmonary hypertension at least in part by recoupling eNOS in the pulmonary vasculature of newborn piglets. Rescue treatment with sapropterin may be an effective strategy to inhibit further development of pulmonary hypertension in newborn infants suffering from chronic cardiopulmonary conditions associated with episodes of prolonged hypoxia.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Biopterinas / Óxido Nítrico Sintase Tipo III / Hipertensão Pulmonar Limite: Animals Idioma: En Revista: Am J Physiol Lung Cell Mol Physiol Assunto da revista: BIOLOGIA MOLECULAR / FISIOLOGIA Ano de publicação: 2016 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Biopterinas / Óxido Nítrico Sintase Tipo III / Hipertensão Pulmonar Limite: Animals Idioma: En Revista: Am J Physiol Lung Cell Mol Physiol Assunto da revista: BIOLOGIA MOLECULAR / FISIOLOGIA Ano de publicação: 2016 Tipo de documento: Article