A novel computational method for inferring competing endogenous interactions.
Brief Bioinform
; 18(6): 1071-1081, 2017 Nov 01.
Article
em En
| MEDLINE
| ID: mdl-27677959
Posttranscriptional cross talk and communication between genes mediated by microRNA response element (MREs) yield large regulatory competing endogenous RNA (ceRNA) networks. Their inference may improve the understanding of pathologies and shed new light on biological mechanisms. A variety of RNA: messenger RNA, transcribed pseudogenes, noncoding RNA, circular RNA and proteins related to RNA-induced silencing complex complex interacting with RNA transfer and ribosomal RNA have been experimentally proved to be ceRNAs. We retrace the ceRNA hypothesis of posttranscriptional regulation from its original formulation [Salmena L, Poliseno L, Tay Y, et al. Cell 2011;146:353-8] to the most recent experimental and computational validations. We experimentally analyze the methods in literature [Li J-H, Liu S, Zhou H, et al. Nucleic Acids Res 2013;42:D92-7; Sumazin P, Yang X, Chiu H-S, et al. Cell 2011;147:370-81; Sarver AL, Subramanian S. Bioinformation 2012;8:731-3] comparing them with a general machine learning approach, called ceRNA predIction Algorithm, evaluating the performance in predicting novel MRE-based ceRNAs.
Palavras-chave
Texto completo:
1
Base de dados:
MEDLINE
Assunto principal:
RNA
/
RNA Mensageiro
/
Regulação da Expressão Gênica
/
Biologia Computacional
/
MicroRNAs
/
RNA Longo não Codificante
Tipo de estudo:
Prognostic_studies
Limite:
Humans
Idioma:
En
Revista:
Brief Bioinform
Assunto da revista:
BIOLOGIA
/
INFORMATICA MEDICA
Ano de publicação:
2017
Tipo de documento:
Article