Your browser doesn't support javascript.
loading
TP53-inducible Glycolysis and Apoptosis Regulator (TIGAR) Metabolically Reprograms Carcinoma and Stromal Cells in Breast Cancer.
Ko, Ying-Hui; Domingo-Vidal, Marina; Roche, Megan; Lin, Zhao; Whitaker-Menezes, Diana; Seifert, Erin; Capparelli, Claudia; Tuluc, Madalina; Birbe, Ruth C; Tassone, Patrick; Curry, Joseph M; Navarro-Sabaté, Àurea; Manzano, Anna; Bartrons, Ramon; Caro, Jaime; Martinez-Outschoorn, Ubaldo.
Afiliação
  • Ko YH; From the Department of Medical Oncology.
  • Domingo-Vidal M; From the Department of Medical Oncology.
  • Roche M; From the Department of Medical Oncology.
  • Lin Z; From the Department of Medical Oncology.
  • Whitaker-Menezes D; From the Department of Medical Oncology.
  • Seifert E; the Department of Pathology, Anatomy, and Cell Biology.
  • Capparelli C; the Department of Cancer Biology, and.
  • Tuluc M; the Department of Pathology, Anatomy, and Cell Biology.
  • Birbe RC; Department of Pathology, Cooper University Hospital, Camden, New Jersey 08103.
  • Tassone P; the Department of Otolaryngology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107.
  • Curry JM; the Department of Otolaryngology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107.
  • Navarro-Sabaté À; the Department of Physiological Sciences, University of Barcelona, Barcelona 08907, Spain, and.
  • Manzano A; the Department of Physiological Sciences, University of Barcelona, Barcelona 08907, Spain, and.
  • Bartrons R; the Department of Physiological Sciences, University of Barcelona, Barcelona 08907, Spain, and.
  • Caro J; the Department of Medicine, Cardeza Foundation for Hematological Research, Thomas Jefferson University, Philadelphia, Pennsylvania 19107.
  • Martinez-Outschoorn U; From the Department of Medical Oncology, ubaldo.martinez-outschoorn@jefferson.edu.
J Biol Chem ; 291(51): 26291-26303, 2016 Dec 16.
Article em En | MEDLINE | ID: mdl-27803158
A subgroup of breast cancers has several metabolic compartments. The mechanisms by which metabolic compartmentalization develop in tumors are poorly characterized. TP53 inducible glycolysis and apoptosis regulator (TIGAR) is a bisphosphatase that reduces glycolysis and is highly expressed in carcinoma cells in the majority of human breast cancers. Hence we set out to determine the effects of TIGAR expression on breast carcinoma and fibroblast glycolytic phenotype and tumor growth. The overexpression of this bisphosphatase in carcinoma cells induces expression of enzymes and transporters involved in the catabolism of lactate and glutamine. Carcinoma cells overexpressing TIGAR have higher oxygen consumption rates and ATP levels when exposed to glutamine, lactate, or the combination of glutamine and lactate. Coculture of TIGAR overexpressing carcinoma cells and fibroblasts compared with control cocultures induce more pronounced glycolytic differences between carcinoma and fibroblast cells. Carcinoma cells overexpressing TIGAR have reduced glucose uptake and lactate production. Conversely, fibroblasts in coculture with TIGAR overexpressing carcinoma cells induce HIF (hypoxia-inducible factor) activation with increased glucose uptake, increased 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3 (PFKFB3), and lactate dehydrogenase-A expression. We also studied the effect of this enzyme on tumor growth. TIGAR overexpression in carcinoma cells increases tumor growth in vivo with increased proliferation rates. However, a catalytically inactive variant of TIGAR did not induce tumor growth. Therefore, TIGAR expression in breast carcinoma cells promotes metabolic compartmentalization and tumor growth with a mitochondrial metabolic phenotype with lactate and glutamine catabolism. Targeting TIGAR warrants consideration as a potential therapy for breast cancer.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Neoplasias da Mama / Ácido Glutâmico / Ácido Láctico / Peptídeos e Proteínas de Sinalização Intracelular Limite: Female / Humans Idioma: En Revista: J Biol Chem Ano de publicação: 2016 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Neoplasias da Mama / Ácido Glutâmico / Ácido Láctico / Peptídeos e Proteínas de Sinalização Intracelular Limite: Female / Humans Idioma: En Revista: J Biol Chem Ano de publicação: 2016 Tipo de documento: Article