Your browser doesn't support javascript.
loading
DiNAMO: highly sensitive DNA motif discovery in high-throughput sequencing data.
Saad, Chadi; Noé, Laurent; Richard, Hugues; Leclerc, Julie; Buisine, Marie-Pierre; Touzet, Hélène; Figeac, Martin.
Afiliação
  • Saad C; Univ. Lille, CNRS, Inria, UMR 9189 - CRIStAL - Centre de Recherche en Informatique Signal et Automatique de Lille, Lille, France. chadi.saad@univ-lille1.fr.
  • Noé L; Univ. Lille, Inserm, Lille University Hospital, UMR-S 1172 - JPARC - Centre de Recherche Jean-Pierre AUBERT, Lille, F-59000, France. chadi.saad@univ-lille1.fr.
  • Richard H; Univ. Lille, CNRS, Inria, UMR 9189 - CRIStAL - Centre de Recherche en Informatique Signal et Automatique de Lille, Lille, France.
  • Leclerc J; Sorbonne Université, UMR7238, Laboratory Computational and Quantitative Biology, LCQB, Paris, F-75005, France.
  • Buisine MP; Univ. Lille, Inserm, Lille University Hospital, UMR-S 1172 - JPARC - Centre de Recherche Jean-Pierre AUBERT, Lille, F-59000, France.
  • Touzet H; Univ. Lille, Inserm, Lille University Hospital, UMR-S 1172 - JPARC - Centre de Recherche Jean-Pierre AUBERT, Lille, F-59000, France.
  • Figeac M; Univ. Lille, CNRS, Inria, UMR 9189 - CRIStAL - Centre de Recherche en Informatique Signal et Automatique de Lille, Lille, France.
BMC Bioinformatics ; 19(1): 223, 2018 06 11.
Article em En | MEDLINE | ID: mdl-29890948
BACKGROUND: Discovering over-represented approximate motifs in DNA sequences is an essential part of bioinformatics. This topic has been studied extensively because of the increasing number of potential applications. However, it remains a difficult challenge, especially with the huge quantity of data generated by high throughput sequencing technologies. To overcome this problem, existing tools use greedy algorithms and probabilistic approaches to find motifs in reasonable time. Nevertheless these approaches lack sensitivity and have difficulties coping with rare and subtle motifs. RESULTS: We developed DiNAMO (for DNA MOtif), a new software based on an exhaustive and efficient algorithm for IUPAC motif discovery. We evaluated DiNAMO on synthetic and real datasets with two different applications, namely ChIP-seq peaks and Systematic Sequencing Error analysis. DiNAMO proves to compare favorably with other existing methods and is robust to noise. CONCLUSIONS: We shown that DiNAMO software can serve as a tool to search for degenerate motifs in an exact manner using IUPAC models. DiNAMO can be used in scanning mode with sliding windows or in fixed position mode, which makes it suitable for numerous potential applications. AVAILABILITY: https://github.com/bonsai-team/DiNAMO .
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Software / Análise de Sequência de DNA / Biologia Computacional / Sequenciamento de Nucleotídeos em Larga Escala / Motivos de Nucleotídeos Tipo de estudo: Diagnostic_studies Limite: Humans Idioma: En Revista: BMC Bioinformatics Assunto da revista: INFORMATICA MEDICA Ano de publicação: 2018 Tipo de documento: Article País de afiliação: França

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Software / Análise de Sequência de DNA / Biologia Computacional / Sequenciamento de Nucleotídeos em Larga Escala / Motivos de Nucleotídeos Tipo de estudo: Diagnostic_studies Limite: Humans Idioma: En Revista: BMC Bioinformatics Assunto da revista: INFORMATICA MEDICA Ano de publicação: 2018 Tipo de documento: Article País de afiliação: França