Your browser doesn't support javascript.
loading
Streptococcus pneumoniae potently induces cell death in mesothelial cells.
Rashwan, Rabab; Varano Della Vergiliana, Julius F; Lansley, Sally M; Cheah, Hui Min; Popowicz, Natalia; Paton, James C; Waterer, Grant W; Townsend, Tiffany; Kay, Ian; Brown, Jeremy S; Lee, Y C Gary.
Afiliação
  • Rashwan R; Centre for Respiratory Health, University of Western Australia, Perth, Western Australia, Australia.
  • Varano Della Vergiliana JF; Department of Microbiology and Immunology, Faculty of Medicine, Minia University, Minya, Egypt.
  • Lansley SM; Centre for Respiratory Health, University of Western Australia, Perth, Western Australia, Australia.
  • Cheah HM; School of Medicine & Pharmacology, University of Western Australia, Perth, Western Australia, Australia.
  • Popowicz N; Centre for Respiratory Health, University of Western Australia, Perth, Western Australia, Australia.
  • Paton JC; School of Medicine & Pharmacology, University of Western Australia, Perth, Western Australia, Australia.
  • Waterer GW; Centre for Respiratory Health, University of Western Australia, Perth, Western Australia, Australia.
  • Townsend T; School of Medicine & Pharmacology, University of Western Australia, Perth, Western Australia, Australia.
  • Kay I; Centre for Respiratory Health, University of Western Australia, Perth, Western Australia, Australia.
  • Brown JS; School of Medicine & Pharmacology, University of Western Australia, Perth, Western Australia, Australia.
  • Lee YCG; Department of Pharmacy, Sir Charles Gairdner Hospital, Perth, Western Australia, Australia.
PLoS One ; 13(7): e0201530, 2018.
Article em En | MEDLINE | ID: mdl-30059559
ABSTRACT
Pleural infection/empyema is common and its incidence continues to rise. Streptococcus pneumoniae is the commonest bacterial cause of empyema in children and among the commonest in adults. The mesothelium represents the first line of defense against invading microorganisms, but mesothelial cell responses to common empyema pathogens, including S. pneumoniae, have seldom been studied. We assessed mesothelial cell viability in vitro following exposure to common empyema pathogens. Clinical isolates of S. pneumoniae from 25 patients with invasive pneumococcal disease and three reference strains were tested. All potently induced death of cultured mesothelial cells (MeT-5A) in a dose- and time-dependent manner (>90% at 107 CFU/mL after 24 hours). No significant mesothelial cell killing was observed when cells were co-cultured with Staphylococcus aureus, Streptococcus sanguinis and Streptococcus milleri group bacteria. S. pneumoniae induced mesothelial cell death via secretory product(s) as cytotoxicity could be i) reproduced using conditioned media derived from S. pneumoniae and ii) in transwell studies when the bacteria and mesothelial cells were separated. No excess cell death was seen when heat-killed S. pneumoniae were used. Pneumolysin, a cytolytic S. pneumoniae toxin, induced cell death in a time- and dose-dependent manner. S. pneumoniae lacking the pneumolysin gene (D39 ΔPLY strain) failed to kill mesothelial cells compared to wild type (D39) controls, confirming the necessity of pneumolysin in D39-induced mesothelial cell death. However, pneumolysin gene mutation in other S. pneumoniae strains (TIGR4, ST3 and ST23F) only partly abolished their cytotoxic effects, suggesting different strains may induce cell death via different mechanisms.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Pleura / Streptococcus pneumoniae / Células Epiteliais Limite: Child / Humans Idioma: En Revista: PLoS One Assunto da revista: CIENCIA / MEDICINA Ano de publicação: 2018 Tipo de documento: Article País de afiliação: Austrália

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Pleura / Streptococcus pneumoniae / Células Epiteliais Limite: Child / Humans Idioma: En Revista: PLoS One Assunto da revista: CIENCIA / MEDICINA Ano de publicação: 2018 Tipo de documento: Article País de afiliação: Austrália