Your browser doesn't support javascript.
loading
Hybrid Nanomedicine Fabricated from Photosensitizer-Terminated Metal-Organic Framework Nanoparticles for Photodynamic Therapy and Hypoxia-Activated Cascade Chemotherapy.
He, Zhimei; Dai, Yunlu; Li, Xiangli; Guo, Dan; Liu, Yijing; Huang, Xiaolin; Jiang, Jingjing; Wang, Sheng; Zhu, Guizhi; Zhang, Fuwu; Lin, Lisen; Zhu, Jun-Jie; Yu, Guocan; Chen, Xiaoyuan.
Afiliação
  • He Z; State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China.
  • Dai Y; Faculty of Health Sciences, University of Macau, Macau SAR, 999078, P. R. China.
  • Li X; Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD, 20892, USA.
  • Guo D; State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China.
  • Liu Y; State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China.
  • Huang X; Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD, 20892, USA.
  • Jiang J; Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD, 20892, USA.
  • Wang S; State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China.
  • Zhu G; Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD, 20892, USA.
  • Zhang F; Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD, 20892, USA.
  • Lin L; Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD, 20892, USA.
  • Zhu JJ; Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD, 20892, USA.
  • Yu G; State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China.
  • Chen X; Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD, 20892, USA.
Small ; 15(4): e1804131, 2019 01.
Article em En | MEDLINE | ID: mdl-30565431
ABSTRACT
During photodynamic therapy (PDT), severe hypoxia often occurs as an undesirable limitation of PDT owing to the O2 -consuming photodynamic process, compromising the effectiveness of PDT. To overcome this problem, several strategies aiming to improve tumor oxygenation are developed. Unlike these traditional approaches, an opposite method combining hypoxia-activated prodrug and PDT may provide a promising strategy for cancer synergistic therapy. In light of this, azido-/photosensitizer-terminated UiO-66 nanoscale metal-organic frameworks (UiO-66-H/N3 NMOFs) which serve as nanocarriers for the bioreductive prodrug banoxantrone (AQ4N) are engineered. Owing to the effective shielding of the nanoparticles, the stability of AQ4N is well preserved, highlighting the vital function of the nanocarriers. By virtue of strain-promoted azide-alkyne cycloaddition, the nanocarriers are further decorated with a dense PEG layer to enhance their dispersion in the physiological environment and improve their therapeutic performance. Both in vitro and in vivo studies reveal that the O2 -depleting PDT process indeed aggravates intracellular/tumor hypoxia that activates the cytotoxicity of AQ4N through a cascade process, consequently achieving PDT-induced and hypoxia-activated synergistic therapy. Benefiting from the localized therapeutic effect of PDT and hypoxia-activated cytotoxicity of AQ4N, this hybrid nanomedicine exhibits enhanced therapeutic efficacy with negligible systemic toxicity, making it a promising candidate for cancer therapy.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Fotoquimioterapia / Fármacos Fotossensibilizantes / Nanomedicina / Nanopartículas Limite: Humans Idioma: En Revista: Small Assunto da revista: ENGENHARIA BIOMEDICA Ano de publicação: 2019 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Fotoquimioterapia / Fármacos Fotossensibilizantes / Nanomedicina / Nanopartículas Limite: Humans Idioma: En Revista: Small Assunto da revista: ENGENHARIA BIOMEDICA Ano de publicação: 2019 Tipo de documento: Article