Functional Heatmap: an automated and interactive pattern recognition tool to integrate time with multi-omics assays.
BMC Bioinformatics
; 20(1): 81, 2019 Feb 15.
Article
em En
| MEDLINE
| ID: mdl-30770734
BACKGROUND: Life science research is moving quickly towards large-scale experimental designs that are comprised of multiple tissues, time points, and samples. Omic time-series experiments offer answers to three big questions: what collective patterns do most analytes follow, which analytes follow an identical pattern or synchronize across multiple cohorts, and how do biological functions evolve over time. Existing tools fall short of robustly answering and visualizing all three questions in a unified interface. RESULTS: Functional Heatmap offers time-series data visualization through a Master Panel page, and Combined page to answer each of the three time-series questions. It dissects the complex multi-omics time-series readouts into patterned clusters with associated biological functions. It allows users to identify a cascade of functional changes over a time variable. Inversely, Functional Heatmap can compare a pattern with specific biology respond to multiple experimental conditions. All analyses are interactive, searchable, and exportable in a form of heatmap, line-chart, or text, and the results are easy to share, maintain, and reproduce on the web platform. CONCLUSIONS: Functional Heatmap is an automated and interactive tool that enables pattern recognition in time-series multi-omics assays. It significantly reduces the manual labour of pattern discovery and comparison by transferring statistical models into visual clues. The new pattern recognition feature will help researchers identify hidden trends driven by functional changes using multi-tissues/conditions on a time-series fashion from omic assays.
Texto completo:
1
Base de dados:
MEDLINE
Assunto principal:
Pele
/
Software
/
Reconhecimento Automatizado de Padrão
/
Biologia Computacional
/
Transcriptoma
Tipo de estudo:
Prognostic_studies
/
Risk_factors_studies
Limite:
Humans
Idioma:
En
Revista:
BMC Bioinformatics
Assunto da revista:
INFORMATICA MEDICA
Ano de publicação:
2019
Tipo de documento:
Article
País de afiliação:
Estados Unidos