Your browser doesn't support javascript.
loading
DQueST: dynamic questionnaire for search of clinical trials.
Liu, Cong; Yuan, Chi; Butler, Alex M; Carvajal, Richard D; Li, Ziran Ryan; Ta, Casey N; Weng, Chunhua.
Afiliação
  • Liu C; Department of Biomedical Informatics, Columbia University, New York, New York, USA.
  • Yuan C; Department of Biomedical Informatics, Columbia University, New York, New York, USA.
  • Butler AM; Department of Biomedical Informatics, Columbia University, New York, New York, USA.
  • Carvajal RD; Department of Medicine, Columbia University, New York, New York, USA.
  • Li ZR; Department of Medicine, Columbia University, New York, New York, USA.
  • Ta CN; Department of Biomedical Informatics, Columbia University, New York, New York, USA.
  • Weng C; Department of Biomedical Informatics, Columbia University, New York, New York, USA.
J Am Med Inform Assoc ; 26(11): 1333-1343, 2019 11 01.
Article em En | MEDLINE | ID: mdl-31390010
OBJECTIVE: Information overload remains a challenge for patients seeking clinical trials. We present a novel system (DQueST) that reduces information overload for trial seekers using dynamic questionnaires. MATERIALS AND METHODS: DQueST first performs information extraction and criteria library curation. DQueST transforms criteria narratives in the ClinicalTrials.gov repository into a structured format, normalizes clinical entities using standard concepts, clusters related criteria, and stores the resulting curated library. DQueST then implements a real-time dynamic question generation algorithm. During user interaction, the initial search is similar to a standard search engine, and then DQueST performs real-time dynamic question generation to select criteria from the library 1 at a time by maximizing its relevance score that reflects its ability to rule out ineligible trials. DQueST dynamically updates the remaining trial set by removing ineligible trials based on user responses to corresponding questions. The process iterates until users decide to stop and begin manually reviewing the remaining trials. RESULTS: In simulation experiments initiated by 10 diseases, DQueST reduced information overload by filtering out 60%-80% of initial trials after 50 questions. Reviewing the generated questions against previous answers, on average, 79.7% of the questions were relevant to the queried conditions. By examining the eligibility of random samples of trials ruled out by DQueST, we estimate the accuracy of the filtering procedure is 63.7%. In a study using 5 mock patient profiles, DQueST on average retrieved trials with a 1.465 times higher density of eligible trials than an existing search engine. In a patient-centered usability evaluation, patients found DQueST useful, easy to use, and returning relevant results. CONCLUSION: DQueST contributes a novel framework for transforming free-text eligibility criteria to questions and filtering out clinical trials based on user answers to questions dynamically. It promises to augment keyword-based methods to improve clinical trial search.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Inquéritos e Questionários / Ensaios Clínicos como Assunto / Armazenamento e Recuperação da Informação / Ferramenta de Busca Tipo de estudo: Clinical_trials / Prognostic_studies / Qualitative_research Limite: Humans Idioma: En Revista: J Am Med Inform Assoc Assunto da revista: INFORMATICA MEDICA Ano de publicação: 2019 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Inquéritos e Questionários / Ensaios Clínicos como Assunto / Armazenamento e Recuperação da Informação / Ferramenta de Busca Tipo de estudo: Clinical_trials / Prognostic_studies / Qualitative_research Limite: Humans Idioma: En Revista: J Am Med Inform Assoc Assunto da revista: INFORMATICA MEDICA Ano de publicação: 2019 Tipo de documento: Article País de afiliação: Estados Unidos