Your browser doesn't support javascript.
loading
Detecting Systemic Data Quality Issues in Electronic Health Records.
Ta, Casey N; Weng, Chunhua.
Afiliação
  • Ta CN; Department of Biomedical Informatics, Columbia University Irving Medical Center, New York, NY, USA.
  • Weng C; Department of Biomedical Informatics, Columbia University Irving Medical Center, New York, NY, USA.
Stud Health Technol Inform ; 264: 383-387, 2019 Aug 21.
Article em En | MEDLINE | ID: mdl-31437950
Secondary analysis of electronic health records for clinical research faces significant challenges due to known data quality issues in health data observationally collected for clinical care and the data biases caused by standard healthcare processes. In this manuscript, we contribute methodology for data quality assessment by plotting domain-level (conditions (diagnoses), drugs, and procedures) aggregate statistics and concept-level temporal frequencies (i.e., annual prevalence rates of clinical concepts). We detect common temporal patterns in concept frequencies by normalizing and clustering annual concept frequencies using K-means clustering. We apply these methods to the Columbia University Irving Medical Center Observational Medical Outcomes Partnership database. The resulting domain-aggregate and cluster plots show a variety of patterns. We review the patterns found in the condition domain and investigate the processes that shape them. We find that these patterns suggest data quality issues influenced by system-wide factors that affect individual concept frequencies.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Registros Eletrônicos de Saúde / Confiabilidade dos Dados Tipo de estudo: Risk_factors_studies Idioma: En Revista: Stud Health Technol Inform Assunto da revista: INFORMATICA MEDICA / PESQUISA EM SERVICOS DE SAUDE Ano de publicação: 2019 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Registros Eletrônicos de Saúde / Confiabilidade dos Dados Tipo de estudo: Risk_factors_studies Idioma: En Revista: Stud Health Technol Inform Assunto da revista: INFORMATICA MEDICA / PESQUISA EM SERVICOS DE SAUDE Ano de publicação: 2019 Tipo de documento: Article País de afiliação: Estados Unidos