Your browser doesn't support javascript.
loading
Calligraphy/Painting Based on a Bioinspired Light-Driven Micromotor with Concentration-Dependent Motion Direction Reversal and Dynamic Swarming Behavior.
Sun, Yunyu; Liu, Ye; Zhang, Dongmei; Zhang, Hui; Jiang, Jiwei; Duan, Ruomeng; Xiao, Jie; Xing, Jingjing; Zhang, Dafeng; Dong, Bin.
Afiliação
  • Sun Y; Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices , Soochow University , Suzhou 215123 , Jiangsu , China.
  • Liu Y; Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices , Soochow University , Suzhou 215123 , Jiangsu , China.
  • Zhang D; Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices , Soochow University , Suzhou 215123 , Jiangsu , China.
  • Zhang H; Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices , Soochow University , Suzhou 215123 , Jiangsu , China.
  • Jiang J; Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices , Soochow University , Suzhou 215123 , Jiangsu , China.
  • Duan R; School of Environment and Civil Engineering , Dongguan University of Technology , Dongguan , Guangdong 523808 , China.
  • Xiao J; Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices , Soochow University , Suzhou 215123 , Jiangsu , China.
  • Xing J; Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices , Soochow University , Suzhou 215123 , Jiangsu , China.
  • Zhang D; School of Materials Science and Engineering , Liaocheng University , Liaocheng , Shandong 252000 , China.
  • Dong B; Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices , Soochow University , Suzhou 215123 , Jiangsu , China.
ACS Appl Mater Interfaces ; 11(43): 40533-40542, 2019 Oct 30.
Article em En | MEDLINE | ID: mdl-31577118
ABSTRACT
Inspired by the collective behavior of natural living systems, the collective behavior of micromotors has become the research highlight. Although great progress has been made, it is still challenging to control the collective behavior of micromotors. In this paper, we demonstrate a novel near-infrared (NIR) light-powered micromotor consisting of a polystyrene microsphere and a polydopamine core-shell structure (PS@PDA) with concentration-dependent motion direction reversal and dynamic swarming behavior. Among others, a single micromotor exhibits negative phototaxis, whereas a group of micromotors shows positive phototaxis, which can be attributed to the competition between the thermophoretic force and hydrodynamic drag caused by the thermal buoyancy. In addition, because of the reversible hydrogen bonding and π-π stacking interactions between the adjacent PS@PDA micromotors, they form aggregation as a result of the positive phototaxis with dynamically controllable shapes tuned by the irradiation position, which makes them potentially attractive for in-solution calligraphy and painting. It is anticipated that the current study may not only provide a new strategy to control the collective behavior of the micromotors, but also promote their application in the practical field.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Revista: ACS Appl Mater Interfaces Assunto da revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Ano de publicação: 2019 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Base de dados: MEDLINE Idioma: En Revista: ACS Appl Mater Interfaces Assunto da revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Ano de publicação: 2019 Tipo de documento: Article País de afiliação: China