Your browser doesn't support javascript.
loading
mTOR-mediated metabolic reprogramming shapes distinct microglia functions in response to lipopolysaccharide and ATP.
Hu, Yaling; Mai, Weihao; Chen, Lunhao; Cao, Kelei; Zhang, Bin; Zhang, Zhenjie; Liu, Yijun; Lou, Huifang; Duan, Shumin; Gao, Zhihua.
Afiliação
  • Hu Y; Neuroscience Research Center and Department of Neurology of Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China.
  • Mai W; Neuroscience Research Center and Department of Neurology of Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China.
  • Chen L; Neuroscience Research Center and Department of Neurology of Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China.
  • Cao K; Department of Orthopedic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
  • Zhang B; Neuroscience Research Center and Department of Neurology of Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China.
  • Zhang Z; Neuroscience Research Center and Department of Neurology of Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China.
  • Liu Y; Neuroscience Research Center and Department of Neurology of Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China.
  • Lou H; Neuroscience Research Center and Department of Neurology of Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China.
  • Duan S; Neuroscience Research Center and Department of Neurology of Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China.
  • Gao Z; Neuroscience Research Center and Department of Neurology of Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China.
Glia ; 68(5): 1031-1045, 2020 05.
Article em En | MEDLINE | ID: mdl-31793691
ABSTRACT
Microglia constantly survey the brain microenvironment and rapidly adopt different phenotypes in response to environmental stimuli. Such dynamic functions require a unique metabolism and bioenergetics. However, little is known about the basic metabolism of microglia and how metabolic changes regulate microglia function. Here, we uncover that microglia activation is accompanied by extensive transcriptional changes in glucose and lipid metabolism-related genes. Using metabolic flux assays, we found that LPS, a prototype of the pathogen-associated molecular patterns (PAMPs), significantly enhanced glycolysis but suppressed oxidative phosphorylation (OXPHOS) in primary cultured microglia. By contrast, ATP, a known damage-associated molecular pattern (DAMPs) that triggers sterile activation of microglia, boosted both glycolysis and OXPHOS. Importantly, both LPS and ATP activated the mechanistic target of rapamycin (mTOR) pathway and enhanced the intracellular reactive oxygen species (ROS). Inhibition of mTOR activity suppressed glycolysis and ROS production in both conditions but exerted different effects on OXPHOS it attenuated the ATP-induced elevation of OXPHOS, yet had no impact on the LPS-induced suppression of OXPHOS. Further, inhibition of mTOR or glycolysis decreased production of LPS-induced proinflammatory cytokines and ATP-induced tumor necrosis factor-α (TNF-α) and brain derived neurotrophic factor (BDNF) in microglia. Our study reveals a critical role for mTOR in the regulation of metabolic programming of microglia to shape their distinct functions under different states and shed light on the potential application of targeting metabolism to interfere with microglia-mediated neuroinflammation in multiple disorders.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Fosforilação Oxidativa / Transdução de Sinais / Trifosfato de Adenosina / Lipopolissacarídeos / Microglia / Serina-Treonina Quinases TOR / Glicólise Limite: Animals Idioma: En Revista: Glia Assunto da revista: NEUROLOGIA Ano de publicação: 2020 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Fosforilação Oxidativa / Transdução de Sinais / Trifosfato de Adenosina / Lipopolissacarídeos / Microglia / Serina-Treonina Quinases TOR / Glicólise Limite: Animals Idioma: En Revista: Glia Assunto da revista: NEUROLOGIA Ano de publicação: 2020 Tipo de documento: Article País de afiliação: China