Your browser doesn't support javascript.
loading
Decoding rumination: A machine learning approach to a transdiagnostic sample of outpatients with anxiety, mood and psychotic disorders.
Silveira, Érico de Moura; Passos, Ives Cavalcante; Scott, Jan; Bristot, Giovana; Scotton, Ellen; Teixeira Mendes, Lorenna Sena; Umpierre Knackfuss, Ana Claudia; Gerchmann, Luciana; Fijtman, Adam; Trasel, Andrea Ruschel; Salum, Giovanni Abrahão; Kauer-Sant'Anna, Márcia.
Afiliação
  • Silveira ÉM; Laboratory of Molecular Psychiatry, Graduate Program in Psychiatry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil. Electronic address: erico.moura@gmail.com.
  • Passos IC; Laboratory of Molecular Psychiatry, Graduate Program in Psychiatry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
  • Scott J; Professor at the Academic Psychiatry, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK.
  • Bristot G; Graduate Program in Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
  • Scotton E; Laboratory of Molecular Psychiatry, Graduate Program in Psychiatry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
  • Teixeira Mendes LS; Section on Negative Affect and Social Processes, Hospital de Clínicas de Porto Alegre, Department of Psychiatry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
  • Umpierre Knackfuss AC; Section on Negative Affect and Social Processes, Hospital de Clínicas de Porto Alegre, Department of Psychiatry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
  • Gerchmann L; Section on Negative Affect and Social Processes, Hospital de Clínicas de Porto Alegre, Department of Psychiatry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
  • Fijtman A; Laboratory of Molecular Psychiatry, Graduate Program in Psychiatry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
  • Trasel AR; Laboratory of Molecular Psychiatry, Graduate Program in Psychiatry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
  • Salum GA; Section on Negative Affect and Social Processes, Hospital de Clínicas de Porto Alegre, Department of Psychiatry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
  • Kauer-Sant'Anna M; Laboratory of Molecular Psychiatry, Graduate Program in Psychiatry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
J Psychiatr Res ; 121: 207-213, 2020 02.
Article em En | MEDLINE | ID: mdl-31865210
OBJECTIVE: To employ machine learning algorithms to examine patterns of rumination from RDoC perspective and to determine which variables predict high levels of maladaptive rumination across a transdiagnostic sample. METHOD: Sample of 200 consecutive, consenting outpatient referrals with clinical diagnoses of schizophrenia, schizoaffective, bipolar, depression, anxiety disorders, obsessive compulsive and post-traumatic stress. Machine learning algorithms used a range of variables including sociodemographics, serum levels of immune markers (IL-6, IL-1ß, IL-10, TNF-α and CCL11) and BDNF, psychiatric symptoms and disorders, history of suicide and hospitalizations, functionality, medication use and comorbidities. RESULTS: The best model (with recursive feature elimination) included the following variables: socioeconomic status, illness severity, worry, generalized anxiety and depressive symptoms, and current diagnosis of panic disorder. Linear support vector machine learning differentiated individuals with high levels of rumination from those ones with low (AUC = 0.83, sensitivity = 75, specificity = 71). CONCLUSIONS: Rumination is known to be associated with poor prognosis in mental health. This study suggests that rumination is a maladaptive coping style associated not only with worry, distress and illness severity, but also with socioeconomic status. Also, rumination demonstrated a specific association with panic disorder.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Transtornos de Ansiedade / Transtornos Psicóticos / Classe Social / Transtornos do Humor / Máquina de Vetores de Suporte / Ruminação Cognitiva / Modelos Teóricos Tipo de estudo: Prognostic_studies Limite: Adult / Female / Humans / Male / Middle aged Idioma: En Revista: J Psychiatr Res Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Transtornos de Ansiedade / Transtornos Psicóticos / Classe Social / Transtornos do Humor / Máquina de Vetores de Suporte / Ruminação Cognitiva / Modelos Teóricos Tipo de estudo: Prognostic_studies Limite: Adult / Female / Humans / Male / Middle aged Idioma: En Revista: J Psychiatr Res Ano de publicação: 2020 Tipo de documento: Article