Your browser doesn't support javascript.
loading
Bacterial Defense Systems against the Neutrophilic Oxidant Hypochlorous Acid.
Sultana, Sadia; Foti, Alessandro; Dahl, Jan-Ulrik.
Afiliação
  • Sultana S; Illinois State University, School of Biological Sciences, Normal, Illinois, USA.
  • Foti A; Max-Planck Institute of Infection Biology, Department of Cellular Microbiology, Berlin, Germany.
  • Dahl JU; Illinois State University, School of Biological Sciences, Normal, Illinois, USA jdahl1@ilstu.edu.
Infect Immun ; 88(7)2020 06 22.
Article em En | MEDLINE | ID: mdl-32152198
Neutrophils kill invading microbes and therefore represent the first line of defense of the innate immune response. Activated neutrophils assemble NADPH oxidase to convert substantial amounts of molecular oxygen into superoxide, which, after dismutation into peroxide, serves as the substrate for the generation of the potent antimicrobial hypochlorous acid (HOCl) in the phagosomal space. In this minireview, we explore the most recent insights into physiological consequences of HOCl stress. Not surprisingly, Gram-negative bacteria have evolved diverse posttranslational defense mechanisms to protect their proteins, the main targets of HOCl, from HOCl-mediated damage. We discuss the idea that oxidation of conserved cysteine residues and partial unfolding of its structure convert the heat shock protein Hsp33 into a highly active chaperone holdase that binds unfolded proteins and prevents their aggregation. We examine two novel members of the Escherichia coli chaperone holdase family, RidA and CnoX, whose thiol-independent activation mechanism differs from that of Hsp33 and requires N-chlorination of positively charged amino acids during HOCl exposure. Furthermore, we summarize the latest findings with respect to another bacterial defense strategy employed in response to HOCl stress, which involves the accumulation of the universally conserved biopolymer inorganic polyphosphate. We then discuss sophisticated adaptive strategies that bacteria have developed to enhance their survival during HOCl stress. Understanding bacterial defense and survival strategies against one of the most powerful neutrophilic oxidants may provide novel insights into treatment options that potentially compromise the ability of pathogens to resist HOCl stress and therefore may increase the efficacy of the innate immune response.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Bactérias / Infecções Bacterianas / Oxidantes / Ácido Hipocloroso / Mecanismos de Defesa / Neutrófilos Limite: Humans Idioma: En Revista: Infect Immun Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Bactérias / Infecções Bacterianas / Oxidantes / Ácido Hipocloroso / Mecanismos de Defesa / Neutrófilos Limite: Humans Idioma: En Revista: Infect Immun Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Estados Unidos