Your browser doesn't support javascript.
loading
ASICs are required for immediate exercise-induced muscle pain and are downregulated in sensory neurons by exercise training.
Khataei, Tahsin; Harding, Anne Marie S; Janahmadi, Mahyar; El-Geneidy, Maram; Agha-Alinejad, Hamid; Rajabi, Hamid; Snyder, Peter M; Sluka, Kathleen A; Benson, Christopher J.
Afiliação
  • Khataei T; Department of Exercise Physiology, Tarbiat Modares University, Tehran, Iran.
  • Harding AMS; Department of Internal Medicine, University of Iowa, Roy J. and Lucile A. Carver College of Medicine, Iowa City, Iowa.
  • Janahmadi M; Iowa City Veterans Affairs Healthcare System, Iowa City, Iowa.
  • El-Geneidy M; Department of Internal Medicine, University of Iowa, Roy J. and Lucile A. Carver College of Medicine, Iowa City, Iowa.
  • Agha-Alinejad H; Iowa City Veterans Affairs Healthcare System, Iowa City, Iowa.
  • Rajabi H; Department of Physiology and Neuroscience Research Center, Medical School, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
  • Snyder PM; Department of Internal Medicine, University of Iowa, Roy J. and Lucile A. Carver College of Medicine, Iowa City, Iowa.
  • Sluka KA; Iowa City Veterans Affairs Healthcare System, Iowa City, Iowa.
  • Benson CJ; Department of Exercise Physiology, Tarbiat Modares University, Tehran, Iran.
J Appl Physiol (1985) ; 129(1): 17-26, 2020 07 01.
Article em En | MEDLINE | ID: mdl-32463731
Exercise training is an effective therapy for many pain-related conditions, and trained athletes have lower pain perception compared with unconditioned people. Some painful conditions, including strenuous exercise, are associated with elevated levels of protons, metabolites, and inflammatory factors, which may activate receptors and/or ion channels, including acid-sensing ion channels (ASICs), on nociceptive sensory neurons. We hypothesized that ASICs are required for immediate exercise-induced muscle pain (IEIP) and that exercise training diminishes IEIP by modulating ASICs within muscle afferents. We found high-intensity interval training (HIIT) reduced IEIP in C57BL/6 mice and diminished ASIC mRNA levels in lumber dorsal root ganglia, and this downregulation of ASICs correlated with improved exercise capacity. Additionally, we found that ASIC3 -/- mice did not develop IEIP; however, the exercise capacity of ASIC3 -/- was similar to wild-type mice. These results suggest that ASICs are required for IEIP and that diminishment of IEIP after exercise training correlates with downregulation of ASICs in sensory neurons.NEW & NOTEWORTHY Exercise performance can be limited by the sensations of muscle fatigue and pain transmitted by muscle afferents. It has been proposed that exercise training abrogates these negative feedback signals. We found that acid-sensing ion channels (ASICs) are required for immediate exercise-induced muscle pain (IEIP). Moreover, exercise training prevented IEIP and was correlated with downregulation of ASICs in sensory neurons.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Canais Iônicos Sensíveis a Ácido / Mialgia Limite: Animals Idioma: En Revista: J Appl Physiol (1985) Assunto da revista: FISIOLOGIA Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Irã

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Canais Iônicos Sensíveis a Ácido / Mialgia Limite: Animals Idioma: En Revista: J Appl Physiol (1985) Assunto da revista: FISIOLOGIA Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Irã