Your browser doesn't support javascript.
loading
Simulating the spread of COVID-19 via a spatially-resolved susceptible-exposed-infected-recovered-deceased (SEIRD) model with heterogeneous diffusion.
Viguerie, Alex; Lorenzo, Guillermo; Auricchio, Ferdinando; Baroli, Davide; Hughes, Thomas J R; Patton, Alessia; Reali, Alessandro; Yankeelov, Thomas E; Veneziani, Alessandro.
Afiliação
  • Viguerie A; Dipartimento di Ingegneria Civile ed Architettura, Università di Pavia, Via Ferrata 3, Pavia, PV 27100, Italy.
  • Lorenzo G; Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, 201 E. 24th Street, Austin, TX 78712-1229, USA.
  • Auricchio F; Dipartimento di Ingegneria Civile ed Architettura, Università di Pavia, Via Ferrata 3, Pavia, PV 27100, Italy.
  • Baroli D; Aachen Institute for Advanced Study in Computational Engineering Science (AICES), RWTH Aachen University, Schinkelstraße 2, 52062 Aachen, Germany.
  • Hughes TJR; Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, 201 E. 24th Street, Austin, TX 78712-1229, USA.
  • Patton A; Dipartimento di Ingegneria Civile ed Architettura, Università di Pavia, Via Ferrata 3, Pavia, PV 27100, Italy.
  • Reali A; Dipartimento di Ingegneria Civile ed Architettura, Università di Pavia, Via Ferrata 3, Pavia, PV 27100, Italy.
  • Yankeelov TE; Departments of Biomedical Engineering, Diagnostic Medicine, and Oncology, Livestrong Cancer Institutes, The University of Texas at Austin, 107 W. Dean Keeton St., Austin, TX 78712, USA.
  • Veneziani A; Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, 201 E. 24th Street, Austin, TX 78712-1229, USA.
Appl Math Lett ; 111: 106617, 2021 Jan.
Article em En | MEDLINE | ID: mdl-32834475
We present an early version of a Susceptible-Exposed-Infected-Recovered-Deceased (SEIRD) mathematical model based on partial differential equations coupled with a heterogeneous diffusion model. The model describes the spatio-temporal spread of the COVID-19 pandemic, and aims to capture dynamics also based on human habits and geographical features. To test the model, we compare the outputs generated by a finite-element solver with measured data over the Italian region of Lombardy, which has been heavily impacted by this crisis between February and April 2020. Our results show a strong qualitative agreement between the simulated forecast of the spatio-temporal COVID-19 spread in Lombardy and epidemiological data collected at the municipality level. Additional simulations exploring alternative scenarios for the relaxation of lockdown restrictions suggest that reopening strategies should account for local population densities and the specific dynamics of the contagion. Thus, we argue that data-driven simulations of our model could ultimately inform health authorities to design effective pandemic-arresting measures and anticipate the geographical allocation of crucial medical resources.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Tipo de estudo: Qualitative_research Idioma: En Revista: Appl Math Lett Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Itália

Texto completo: 1 Base de dados: MEDLINE Tipo de estudo: Qualitative_research Idioma: En Revista: Appl Math Lett Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Itália