Your browser doesn't support javascript.
loading
Ultrahigh-Q AlGaAs-on-insulator microresonators for integrated nonlinear photonics.
Opt Express ; 28(22): 32894-32906, 2020 Oct 26.
Article em En | MEDLINE | ID: mdl-33114964
ABSTRACT
Aluminum gallium arsenide (AlGaAs) and related III-V semiconductors have excellent optoelectronic properties. They also possess strong material nonlinearity as well as high refractive indices. In view of these properties, AlGaAs is a promising candidate for integrated photonics, including both linear and nonlinear devices, passive and active devices, and associated applications. Low propagation loss is essential for integrated photonics, particularly in nonlinear applications. However, achieving low-loss and high-confinement AlGaAs photonic integrated circuits poses a challenge. Here we show an effective reduction of surface-roughness-induced scattering loss in fully etched high-confinement AlGaAs-on-insulator nanowaveguides by using a heterogeneous wafer-bonding approach and optimizing fabrication techniques. We demonstrate ultrahigh-quality AlGaAs microring resonators and realize quality factors up to 3.52 × 106 and finesses as high as 1.4 × 104. We also show ultra-efficient frequency comb generations in those resonators and achieve record-low threshold powers on the order of ∼20 µW and ∼120 µW for the resonators with 1 THz and 90 GHz free-spectral ranges, respectively. Our result paves the way for the implementation of AlGaAs as a novel integrated material platform specifically for nonlinear photonics and opens a new window for chip-based efficiency-demanding practical applications.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Revista: Opt Express Assunto da revista: OFTALMOLOGIA Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Revista: Opt Express Assunto da revista: OFTALMOLOGIA Ano de publicação: 2020 Tipo de documento: Article