Dynamics of an LPS translocon induced by substrate and an antimicrobial peptide.
Nat Chem Biol
; 17(2): 187-195, 2021 02.
Article
em En
| MEDLINE
| ID: mdl-33199913
Lipopolysaccharide (LPS) transport to the outer membrane (OM) is a crucial step in the biogenesis of microbial surface defenses. Although many features of the translocation mechanism have been elucidated, molecular details of LPS insertion via the LPS transport (Lpt) OM protein LptDE remain elusive. Here, we integrate native MS with hydrogen-deuterium exchange MS and molecular dynamics simulations to investigate the influence of substrate and peptide binding on the conformational dynamics of LptDE. Our data reveal that LPS induces opening of the LptD ß-taco domain, coupled with conformational changes on ß-strands adjacent to the putative lateral exit gate. Conversely, an antimicrobial peptide, thanatin, stabilizes the ß-taco, thereby preventing LPS transport. Our results illustrate that LPS insertion into the OM relies on concerted opening movements of both the ß-barrel and ß-taco domains of LptD, and suggest a means for developing antimicrobial therapeutics targeting this essential process in Gram-negative ESKAPE pathogens.
Texto completo:
1
Base de dados:
MEDLINE
Assunto principal:
Proteínas da Membrana Bacteriana Externa
/
Translocação Genética
/
Lipopolissacarídeos
Idioma:
En
Revista:
Nat Chem Biol
Assunto da revista:
BIOLOGIA
/
QUIMICA
Ano de publicação:
2021
Tipo de documento:
Article