Your browser doesn't support javascript.
loading
Heterozygosity for a Pathogenic Variant in SLC12A3 That Causes Autosomal Recessive Gitelman Syndrome Is Associated with Lower Serum Potassium.
Wan, Xuesi; Perry, James; Zhang, Haichen; Jin, Feng; Ryan, Kathleen A; Van Hout, Cristopher; Reid, Jeffrey; Overton, John; Baras, Aris; Han, Zhe; Streeten, Elizabeth; Li, Yanbing; Mitchell, Braxton D; Shuldiner, Alan R; Fu, Mao.
Afiliação
  • Wan X; Program in Personalized and Genomic Medicine, Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland.
  • Perry J; Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
  • Zhang H; Program in Personalized and Genomic Medicine, Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland.
  • Jin F; Program in Personalized and Genomic Medicine, Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland.
  • Ryan KA; Program in Personalized and Genomic Medicine, Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland.
  • Van Hout C; Program in Personalized and Genomic Medicine, Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland.
  • Reid J; Regeneron Genetics Center, Tarrytown, New York.
  • Overton J; Regeneron Genetics Center, Tarrytown, New York.
  • Baras A; Regeneron Genetics Center, Tarrytown, New York.
  • Han Z; Regeneron Genetics Center, Tarrytown, New York.
  • Streeten E; Program in Personalized and Genomic Medicine, Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland.
  • Li Y; Program in Personalized and Genomic Medicine, Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland.
  • Mitchell BD; Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
  • Shuldiner AR; Program in Personalized and Genomic Medicine, Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland.
  • Fu M; Regeneron Genetics Center, Tarrytown, New York.
J Am Soc Nephrol ; 32(3): 756-765, 2021 03.
Article em En | MEDLINE | ID: mdl-33542107
BACKGROUND: Potassium levels regulate multiple physiologic processes. The heritability of serum potassium level is moderate, with published estimates varying from 17% to 60%, suggesting genetic influences. However, the genetic determinants of potassium levels are not generally known. METHODS: A whole-exome sequencing association study of serum potassium levels in 5812 subjects of the Old Order Amish was performed. A dietary salt intervention in 533 Amish subjects estimated interaction between p.R642G and sodium intake. RESULTS: A cluster of variants, spanning approximately 537 kb on chromosome 16q13, was significantly associated with serum potassium levels. Among the associated variants, a known pathogenic variant of autosomal recessive Gitelman syndrome (p.R642G SLC12A3) was most likely causal; there were no homozygotes in our sample. Heterozygosity for p.R642G was also associated with lower chloride levels, but not with sodium levels. Notably, p.R642G showed a novel association with lower serum BUN levels. Heterozygotes for p.R642G had a two-fold higher rate of self-reported bone fractures and had higher resting heart rates on a low-salt diet compared with noncarriers. CONCLUSIONS: This study provides evidence that heterozygosity for a pathogenic variant in SLC12A3 causing Gitelman syndrome, a canonically recessive disorder, contributes to serum potassium concentration. The findings provide insights into SLC12A3 biology and the effects of heterozygosity on electrolyte homeostasis and related subclinical phenotypes that may have implications for personalized medicine and nutrition.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Potássio / Mutação de Sentido Incorreto / Síndrome de Gitelman Tipo de estudo: Etiology_studies / Incidence_studies / Observational_studies / Risk_factors_studies Limite: Adult / Female / Humans / Male / Middle aged País/Região como assunto: America do norte Idioma: En Revista: J Am Soc Nephrol Assunto da revista: NEFROLOGIA Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Potássio / Mutação de Sentido Incorreto / Síndrome de Gitelman Tipo de estudo: Etiology_studies / Incidence_studies / Observational_studies / Risk_factors_studies Limite: Adult / Female / Humans / Male / Middle aged País/Região como assunto: America do norte Idioma: En Revista: J Am Soc Nephrol Assunto da revista: NEFROLOGIA Ano de publicação: 2021 Tipo de documento: Article