Your browser doesn't support javascript.
loading
Structural basis for VIPP1 oligomerization and maintenance of thylakoid membrane integrity.
Gupta, Tilak Kumar; Klumpe, Sven; Gries, Karin; Heinz, Steffen; Wietrzynski, Wojciech; Ohnishi, Norikazu; Niemeyer, Justus; Spaniol, Benjamin; Schaffer, Miroslava; Rast, Anna; Ostermeier, Matthias; Strauss, Mike; Plitzko, Jürgen M; Baumeister, Wolfgang; Rudack, Till; Sakamoto, Wataru; Nickelsen, Jörg; Schuller, Jan M; Schroda, Michael; Engel, Benjamin D.
Afiliação
  • Gupta TK; Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany.
  • Klumpe S; Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany.
  • Gries K; Molecular Biotechnology and Systems Biology, Technische Universität Kaiserslautern, 67663 Kaiserslautern, Germany.
  • Heinz S; Department of Molecular Plant Sciences, LMU Munich, 82152 Martinsried, Germany.
  • Wietrzynski W; Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany; Helmholtz Pioneer Campus, Helmholtz Zentrum München, 85764 Neuherberg, Germany.
  • Ohnishi N; Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama 710-0046, Japan.
  • Niemeyer J; Molecular Biotechnology and Systems Biology, Technische Universität Kaiserslautern, 67663 Kaiserslautern, Germany.
  • Spaniol B; Molecular Biotechnology and Systems Biology, Technische Universität Kaiserslautern, 67663 Kaiserslautern, Germany.
  • Schaffer M; Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany.
  • Rast A; Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany; Department of Molecular Plant Sciences, LMU Munich, 82152 Martinsried, Germany.
  • Ostermeier M; Department of Molecular Plant Sciences, LMU Munich, 82152 Martinsried, Germany.
  • Strauss M; Department of Anatomy and Cell Biology, McGill University, Montreal, QC H3A 17C, Canada.
  • Plitzko JM; Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany.
  • Baumeister W; Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany.
  • Rudack T; Biospectroscopy, Center for Protein Diagnostics (PRODI), Ruhr University Bochum, 44801 Bochum, Germany; Department of Biophysics, Faculty of Biology & Biotechnology, Ruhr University Bochum, 44780 Bochum, Germany.
  • Sakamoto W; Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama 710-0046, Japan.
  • Nickelsen J; Department of Molecular Plant Sciences, LMU Munich, 82152 Martinsried, Germany.
  • Schuller JM; SYNMIKRO Research Center and Department of Chemistry, Philipps-University Marburg, 35032 Marburg, Germany. Electronic address: jan.schuller@synmikro.uni-marburg.de.
  • Schroda M; Molecular Biotechnology and Systems Biology, Technische Universität Kaiserslautern, 67663 Kaiserslautern, Germany. Electronic address: schroda@bio.uni-kl.de.
  • Engel BD; Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany; Helmholtz Pioneer Campus, Helmholtz Zentrum München, 85764 Neuherberg, Germany; Department of Chemistry, Technical University of Munich, 85748 Garching, Germany. Electronic address: ben.enge
Cell ; 184(14): 3643-3659.e23, 2021 07 08.
Article em En | MEDLINE | ID: mdl-34166613
ABSTRACT
Vesicle-inducing protein in plastids 1 (VIPP1) is essential for the biogenesis and maintenance of thylakoid membranes, which transform light into life. However, it is unknown how VIPP1 performs its vital membrane-remodeling functions. Here, we use cryo-electron microscopy to determine structures of cyanobacterial VIPP1 rings, revealing how VIPP1 monomers flex and interweave to form basket-like assemblies of different symmetries. Three VIPP1 monomers together coordinate a non-canonical nucleotide binding pocket on one end of the ring. Inside the ring's lumen, amphipathic helices from each monomer align to form large hydrophobic columns, enabling VIPP1 to bind and curve membranes. In vivo mutations in these hydrophobic surfaces cause extreme thylakoid swelling under high light, indicating an essential role of VIPP1 lipid binding in resisting stress-induced damage. Using cryo-correlative light and electron microscopy (cryo-CLEM), we observe oligomeric VIPP1 coats encapsulating membrane tubules within the Chlamydomonas chloroplast. Our work provides a structural foundation for understanding how VIPP1 directs thylakoid biogenesis and maintenance.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Proteínas de Bactérias / Chlamydomonas / Tilacoides / Synechocystis / Multimerização Proteica Idioma: En Revista: Cell Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Alemanha

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Proteínas de Bactérias / Chlamydomonas / Tilacoides / Synechocystis / Multimerização Proteica Idioma: En Revista: Cell Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Alemanha