Your browser doesn't support javascript.
loading
Construction of a Self-Assembled Polyelectrolyte/Graphene Oxide Multilayer Film and Its Interaction with Metal Ions.
Cao, Zheng; Zhang, Yang; Luo, Zili; Li, Wenjun; Fu, Tao; Qiu, Wang; Lai, Zhirong; Cheng, Junfeng; Yang, Haicun; Ma, Wenzhong; Liu, Chunlin; de Smet, Louis C P M.
Afiliação
  • Cao Z; Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou 213164, Jiangsu, People's Republic of China.
  • Zhang Y; Changzhou University Huaide College, Jingjiang 214500, People's Republic of China.
  • Luo Z; College of Hua Loogeng, Changzhou University, Changzhou, 213164, People's Republic of China.
  • Li W; National Experimental Demonstration Center for Materials Science and Engineering, Changzhou University, Changzhou, 213164, People's Republic of China.
  • Fu T; Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou 213164, Jiangsu, People's Republic of China.
  • Qiu W; Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou 213164, Jiangsu, People's Republic of China.
  • Lai Z; College of Hua Loogeng, Changzhou University, Changzhou, 213164, People's Republic of China.
  • Cheng J; Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou 213164, Jiangsu, People's Republic of China.
  • Yang H; Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou 213164, Jiangsu, People's Republic of China.
  • Ma W; Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou 213164, Jiangsu, People's Republic of China.
  • Liu C; Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou 213164, Jiangsu, People's Republic of China.
  • de Smet LCPM; Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou 213164, Jiangsu, People's Republic of China.
Langmuir ; 37(41): 12148-12162, 2021 Oct 19.
Article em En | MEDLINE | ID: mdl-34618452
ABSTRACT
In this study, a composite multilayer film onto gold was constructed from two charged building blocks, i.e., negatively charged graphene oxide (GO) and a branched polycation (polyethylenimine, PEI) via layer-by-layer (LbL) self-assembly technology, and this process was monitored in situ with quartz crystal microbalance (QCM) under different experimental conditions. This included the differences in frequency (Δf) as well as the changes in dissipation to yield information on the absorbed mass and viscoelastic properties of the formed PEI/GO multilayer films. The experimental conditions were optimized to obtain a high amount of the adsorbed mass of the self-assembled multilayer film. The surface morphology of the PEI/GO multilayer film onto gold was studied with atomic force microscopy (AFM). It was found that the positively charged PEI chains were combined with the oppositely charged GO to form an assembled film on the QCM sensor surface, in a wrapped and curled fashion. Raman and UV-vis spectra also showed that the intensities of the GO-characteristic signals are almost linearly related to the layer number. To explore the films for their use in divalent ion detection, the frequency response of the PEI/GO multilayer-modified QCM sensor to the exposure of aqueous solutions solution of Cu2+, Ca2+, Zn2+, and Sn2+ was further studied using QCM. Based on the Sauerbrey equation and the weight of different ions, the number of metal ions adsorbed per unit area on the surface of QCM sensors was calculated. For metal ion concentrations of 40 ppm, the adsorption capacities per unit area of Cu2+, Zn2+, Sn2+, and Ca2+ were found to be 1.7, 3.2, 0.7, and 4.9 nmol/cm2, respectively. Thus, in terms of the number of adsorbed ions per unit area, the QCM sensor modified by PEI/GO multilayer film shows the largest adsorption capacity of Ca2+. This can be rationalized by the relative hydration energies.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Revista: Langmuir Assunto da revista: QUIMICA Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Revista: Langmuir Assunto da revista: QUIMICA Ano de publicação: 2021 Tipo de documento: Article