Your browser doesn't support javascript.
loading
A Computational Geometry Approach for Modeling Neuronal Fiber Pathways.
Shailja, S; Zhang, Angela; Manjunath, B S.
Afiliação
  • Shailja S; University of California, Santa Barbara, CA 93117, USA.
  • Zhang A; University of California, Santa Barbara, CA 93117, USA.
  • Manjunath BS; University of California, Santa Barbara, CA 93117, USA.
Article em En | MEDLINE | ID: mdl-34729555
We propose a novel and efficient algorithm to model high-level topological structures of neuronal fibers. Tractography constructs complex neuronal fibers in three dimensions that exhibit the geometry of white matter pathways in the brain. However, most tractography analysis methods are time consuming and intractable. We develop a computational geometry-based tractography representation that aims to simplify the connectivity of white matter fibers. Given the trajectories of neuronal fiber pathways, we model the evolution of trajectories that encodes geometrically significant events and calculate their point correspondence in the 3D brain space. Trajectory inter-distance is used as a parameter to control the granularity of the model that allows local or global representation of the tractogram. Using diffusion MRI data from Alzheimer's patient study, we extract tractography features from our model for distinguishing the Alzheimer's subject from the normal control. Software implementation of our algorithm is available on GitHub (https://github.com/UCSB-VRL/ReebGraph.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Revista: Med Image Comput Comput Assist Interv Assunto da revista: DIAGNOSTICO POR IMAGEM / INFORMATICA MEDICA Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Base de dados: MEDLINE Idioma: En Revista: Med Image Comput Comput Assist Interv Assunto da revista: DIAGNOSTICO POR IMAGEM / INFORMATICA MEDICA Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Estados Unidos