Your browser doesn't support javascript.
loading
Epinephelus coioides Hsp27 negatively regulates innate immune response and apoptosis induced by Singapore grouper iridovirus (SGIV) infection.
Li, Pin-Hong; Cai, Yi-Jie; Zhu, Xiang-Long; Yang, Jia-Deng-Hui; Yang, Shi-Qi; Huang, Wei; Wei, Shi-Na; Zhou, Sheng; Wei, Jing-Guang; Qin, Qi-Wei; Sun, Hong-Yan.
Afiliação
  • Li PH; University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong Province, PR China.
  • Cai YJ; University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong Province, PR China.
  • Zhu XL; University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong Province, PR China.
  • Yang JD; University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong Province, PR China.
  • Yang SQ; University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong Province, PR China.
  • Huang W; University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong Province, PR China.
  • Wei SN; University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong Province, PR China.
  • Zhou S; University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong Province, PR China.
  • Wei JG; University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong Province, PR China.
  • Qin QW; University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong Province, PR China; So
  • Sun HY; University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong Province, PR China. El
Fish Shellfish Immunol ; 120: 470-480, 2022 Jan.
Article em En | MEDLINE | ID: mdl-34933091
Heat shock proteins (Hsps) are important for maintaining protein homeostasis and cell survival. In this study, Hsp27 of Epinephelus coioides, an economically important marine fish in China and Southeast Asian countries, was characterized. E. coioides Hsp27 contains the consered ACD_HspB1_like domain and three p38 MAPK phosphorylation sites, located at Thr-13, Thr-60 and Ser-167. E. coioides Hsp27 was distributed in both the cytoplasm and nucleus, its mRNA was detected in all 14 tissues examined, and its expression was up-regulated after challenge with Singapore grouper iridovirus (SGIV), an important E. coioides pathogen. Over-expression of E. coioides Hsp27 significantly upregulated the expressions of the key SGIV genes (VP19, LITAF, MCP, and ICP18), downgraded the expressions of the E. coioides immune factors (IRF3, IRF7, ISG15, and TRAF6) and proinflammatory factors (TNF-α, IL-8), downgraded the activation of nuclear factor kappa-B (NF-κB) and activator protein-1 (AP-1), and substantially inhibited the cell apoptosis induced by SGIV infection. These data illustrated that E. coioides Hsp27 might be involved in SGIV infection by negatively regulating the innate immune response.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Bass / Proteínas de Peixes / Infecções por Vírus de DNA / Doenças dos Peixes / Proteínas de Choque Térmico / Imunidade Inata Limite: Animals Idioma: En Revista: Fish Shellfish Immunol Assunto da revista: BIOLOGIA / MEDICINA VETERINARIA Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Bass / Proteínas de Peixes / Infecções por Vírus de DNA / Doenças dos Peixes / Proteínas de Choque Térmico / Imunidade Inata Limite: Animals Idioma: En Revista: Fish Shellfish Immunol Assunto da revista: BIOLOGIA / MEDICINA VETERINARIA Ano de publicação: 2022 Tipo de documento: Article